cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A269428 Alternating sum of heptagonal pyramidal numbers.

Original entry on oeis.org

0, -1, 7, -19, 41, -74, 122, -186, 270, -375, 505, -661, 847, -1064, 1316, -1604, 1932, -2301, 2715, -3175, 3685, -4246, 4862, -5534, 6266, -7059, 7917, -8841, 9835, -10900, 12040, -13256, 14552, -15929, 17391, -18939, 20577, -22306, 24130, -26050, 28070
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2016

Keywords

Crossrefs

Programs

  • Magma
    [((20*n^3+42*n^2+4*n-9)*(-1)^n+9)/48: n in [0..50]]; // Vincenzo Librandi, Feb 26 2016
    
  • Mathematica
    Table[((20 n^3 + 42 n^2 + 4 n - 9) (-1)^n + 9)/48, {n, 0, 40}]
    LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -1, 7, -19, 41}, 41]
  • PARI
    a(n)=((20*n^3 + 42*n^2 + 4*n - 9)*(-1)^n + 9)/48 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: x*(1 - 4*x)/((x - 1)*(x + 1)^4).
a(n) = ((20*n^3 + 42*n^2 + 4*n - 9)*(-1)^n + 9)/48.
a(n) = Sum_{k = 0..n} (-1)^k*A002413(k).
Sum_{n>=1} 1/a(n) = -0.8939139178060972723185724267951741... . - Vaclav Kotesovec, Feb 26 2016
E.g.f.: (9*sinh(x) - (33*x - 51*x^2 + 10*x^3)*exp(-x))/24. - Franck Maminirina Ramaharo, Nov 11 2018

A279663 a(n) = (5/6)^n*Gamma(n+3/5)*Gamma(n+1)*Gamma(n+2)/Gamma(3/5).

Original entry on oeis.org

1, 1, 8, 208, 12480, 1435200, 281299200, 86640153600, 39507910041600, 25482601976832000, 22424689739612160000, 26147188236387778560000, 39429959860472770068480000, 75350653293363463600865280000, 179334554838205043370059366400000, 523656900127558726640573349888000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 16 2016

Keywords

Comments

Heptagonal pyramidal factorial numbers.

Crossrefs

Cf. A002413.
Cf. A084940 (heptagonal factorial numbers).
Cf. A087047 (tetrahedral factorial numbers), A135438 (square pyramidal factorial numbers), A167484 (pentagonal pyramidal factorial numbers), A279662 (hexagonal pyramidal factorial numbers).

Programs

  • Magma
    [Round((5/6)^n*Gamma(n+3/5)*Gamma(n+1)*Gamma(n+2)/Gamma(3/5)): n in [0..20]]; // Vincenzo Librandi Dec 17 2016
  • Mathematica
    FullSimplify[Table[(5/6)^n Gamma[n + 3/5] Gamma[n + 1] Gamma[n + 2]/Gamma[3/5], {n, 0, 15}]]

Formula

a(n) = Product_{k=1..n} k*(k + 1)*(5*k - 2)/6, a(0)=1.
a(n) = Product_{k=1..n} A002413(k), a(0)=1.
a(n) ~ (2*Pi)^(3/2)*(5/6)^n*n^(3*n+21/10)/(Gamma(3/5)*exp(3*n)).

A287143 Expansion of x*(1 + 3*x + x^2)/((1 - x)^5*(1 + x)^4).

Original entry on oeis.org

0, 1, 4, 9, 21, 35, 65, 95, 155, 210, 315, 406, 574, 714, 966, 1170, 1530, 1815, 2310, 2695, 3355, 3861, 4719, 5369, 6461, 7280, 8645, 9660, 11340, 12580, 14620, 16116, 18564, 20349, 23256, 25365, 28785, 31255, 35245, 38115, 42735, 46046, 51359, 55154, 61226, 65550, 72450, 77350, 85150, 90675, 99450, 105651, 115479
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 3 x + x^2)/((1 - x)^5 (1 + x)^4), {x, 0, 52}], x]
    LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {0, 1, 4, 9, 21, 35, 65, 95, 155}, 53]

Formula

G.f.: x*(1 + 3*x + x^2)/((1 - x)^5*(1 + x)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
Generalized 4-dimensional figurate numbers (A002418): (5*n - 1)*binomial(n + 2,3)/4, n = 0,+1,-3,+2,-4,+3,-5, ...
Convolution of the sequences A027656 and A085787.
a(n) = (2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(5*(2*n^2+10*n+3)-3*(2*n+5)*(-1)^n)/3072. - Luce ETIENNE, Nov 18 2017

A338458 Least number of heptagonal pyramidal numbers needed to represent n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 1, 2, 3, 4, 5, 6, 4, 5, 2, 3, 4, 5, 6, 7, 5, 6, 3, 4, 5, 6, 7, 8, 6, 7, 4, 5, 2, 3, 4, 5, 6, 7, 5, 6, 1, 2, 3, 4, 5, 6, 6, 7, 2, 3, 4, 5, 6, 7, 7, 8, 3, 4, 3, 4, 5, 6, 7, 8, 4, 5, 2, 3, 4, 5, 6, 7, 5, 6, 3, 4, 5, 6, 7, 8, 6, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2020

Keywords

Crossrefs

A104587 Triangle read by rows, given by the matrix product A * B where A (A094727) = [1; 2, 3; 3, 4, 5; 4, 5, 6, 7; ...] and B = [1; 1, 1; 1, 1, 1; ...] (both are infinite lower triangular matrices with the other terms zero).

Original entry on oeis.org

1, 5, 3, 12, 9, 5, 22, 18, 13, 7, 35, 30, 24, 17, 9, 51, 45, 38, 30, 21, 11, 70, 63, 55, 46, 36, 25, 13, 92, 84, 75, 65, 54, 42, 29, 15, 117, 108, 98, 87, 75, 62, 48, 33, 17, 145, 135, 124, 112, 99, 85, 70, 54, 37, 19, 176, 165, 153, 140, 126, 111, 95, 78, 60, 41, 21
Offset: 0

Views

Author

Gary W. Adamson, Mar 17 2005

Keywords

Comments

Left column of the triangle = pentagonal numbers, A000326 (starting with 1).
Row sums = heptagonal pyramidal numbers, A002413.

Examples

			Triangle begins:
   1;
   5,  3;
  12,  9,  5;
  22, 18, 13,  7;
  35, 30, 24, 17,  9;
  51, 45, 38, 30, 21, 11;
  70, 63, 55, 46, 36, 25, 13;
  92, 84, 75, 65, 54, 42, 29, 15;
  ...
		

Crossrefs

Programs

  • PARI
    tabl(nn) = {ma = matrix(nn, nn, n, k, (n+k-1)*(k<=n)); mb = matrix(nn, nn, n, k, (k<=n)); mt = ma*mb; for (i=1, nn, for (j=1, i, print1(ma[i,j], ", ");); print(););} \\ Michel Marcus, Mar 03 2014

Extensions

More terms from Michel Marcus, Mar 03 2014
Edited by Michel Marcus and N. J. A. Sloane, Mar 03 2014

A329530 a(n) = n * (7*binomial(n, 2) + 1).

Original entry on oeis.org

0, 1, 16, 66, 172, 355, 636, 1036, 1576, 2277, 3160, 4246, 5556, 7111, 8932, 11040, 13456, 16201, 19296, 22762, 26620, 30891, 35596, 40756, 46392, 52525, 59176, 66366, 74116, 82447, 91380, 100936, 111136, 122001, 133552, 145810, 158796, 172531, 187036, 202332, 218440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

Centered heptagonal prism numbers.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 144.

Crossrefs

Centered m-gonal prism numbers: A100175 (m = 3), A059722 (m = 4), A006564 (m = 5), A005915 (m = 6), this sequence (m = 7), A139757 (m = 8), A006566 (m = 9).

Programs

  • Mathematica
    Table[n (7 Binomial[n, 2] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 + 12 x + 8 x^2)/(1 - x)^4, {x, 0, nmax}], x]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 16, 66}, 41]

Formula

G.f.: x * (1 + 12*x + 8*x^2) / (1 - x)^4.
E.g.f.: exp(x) * x * (2 + 14*x + 7*x^2) / 2.
a(n) = n * (7*n^2 - 7*n + 2) / 2.
a(n) = n * (7*A000217(n-1) + 1).
a(n) = n * A069099(n).

A353064 Numbers simultaneously square and heptagonal pyramidal.

Original entry on oeis.org

0, 1, 196, 99225
Offset: 1

Views

Author

Kelvin Voskuijl, Apr 21 2022

Keywords

Comments

Is this sequence finite?
No other terms < 10^32. - Michael S. Branicky, Jul 12 2022

Examples

			196 is a term because 196 = 14^2 is a perfect square and 196 = 6*(6+1)*(5*6-2)/6 is the 6th heptagonal pyramidal number.
		

Crossrefs

Intersection of A000290 and A002413.
Cf. A003556 (tetrahedral and square), 1 and 4900 are only squares that are square pyramidal, A277792 (pentagonal pyramidal and square).

Programs

  • Maple
    select(issqr, [seq(n*(n+1)*(5*n-2)/6, n=0..50)])[];  # Alois P. Heinz, Apr 21 2022
  • Mathematica
    Select[Table[n*(n + 1)*(5*n - 2)/6, {n, 0, 100}], IntegerQ @ Sqrt[#] &] (* Amiram Eldar, Apr 21 2022 *)
Previous Showing 31-37 of 37 results.