A020929
Expansion of (1-4*x)^(17/2).
Original entry on oeis.org
1, -34, 510, -4420, 24310, -87516, 204204, -291720, 218790, -48620, -9724, -5304, -4420, -4760, -6120, -8976, -14586, -25740, -48620, -97240, -204204, -447304, -1016600, -2386800, -5768100, -14304888, -36312408, -94143280, -248807240, -669205680, -1829162192
Offset: 0
-
CoefficientList[Series[(1 - 4 x)^(17/2), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 18 2020 *)
A320827
G.f.: -sqrt(1 - 4*x)*(2*x - 1)/(3*x - 1).
Original entry on oeis.org
-1, 1, 1, 3, 11, 41, 151, 549, 1977, 7075, 25229, 89831, 319881, 1140523, 4075321, 14603243, 52501659, 189440937, 686181711, 2495243373, 9109701699, 33388293177, 122840931891, 453622854873, 1681057537359, 6250742452125, 23316503569983, 87236431248445
Offset: 0
-
m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Sqrt(1-4*x)*(1-2*x)/(3*x-1))); // G. C. Greubel, Oct 27 2018
-
ogf := x -> -sqrt(1 - 4*x)*(2*x - 1)/(3*x - 1);
ser := series(ogf(x), x, 30); seq(coeff(ser, x, k), k=0..27);
# By recurrence:
a := proc(n) option remember; if n <= 4 then return [-1,1,1,3,11][n+1] fi;
((-90+66*n-12*n^2)*a(n-2)+(30-34*n+7*n^2)*a(n-1))/((n-4)*n) end:
seq(a(n), n=0..27);
-
a[n_] := (-4)^n Binomial[3/2,n]((4/3)n - 2 + Hypergeometric2F1[1,-n, 5/2 - n, 3/4]); Table[a[n], {n, 0, 27}]
CoefficientList[Series[Sqrt[1-4*x]*(1-2*x)/(3*x-1), {x, 0, 40}], x] (* G. C. Greubel, Oct 27 2018 *)
-
x='x+O('x^40); Vec(sqrt(1-4*x)*(1-2*x)/(3*x-1)) \\ G. C. Greubel, Oct 27 2018
A184881
a(n) = A184879(2*n, n) - A184879(2*n, n+1) where A184879(n, k) = Hypergeometric2F1(-2*k, 2*k-2*n, 1, -1) if 0<=k<=n.
Original entry on oeis.org
1, -3, 2, -3, 6, -14, 36, -99, 286, -858, 2652, -8398, 27132, -89148, 297160, -1002915, 3421710, -11785890, 40940460, -143291610, 504932340, -1790214660, 6382504440, -22870640910, 82334307276, -297670187844, 1080432533656, -3935861372604, 14386251913656
Offset: 0
a(0) = 1;
a(1) = 1 - 4*1 = -3;
a(2) = 4*1 - 2 = 2;
a(3) = 5 - 4*2 = -3;
a(4) = 4*5 - 14 = 6;
a(5) = 42 - 4*14 = -14;
a(6) = 4*42 - 132 = 36;
a(7) = 429 - 4*132 = -99;
a(8) = 4*429 - 1430 = 286, etc; with A000108 = 1,1,2,5,14,42,132,429,1430, ... - _Philippe Deléham_, Mar 19 2014
G.f. = 1 - 3*x + 2*x^2 - 3*x^3 + 6*x^4 - 14*x^5 + 36*x^6 - 99*x^7 + ... - _Michael Somos_, Mar 13 2023
-
A184879 := proc(n,k) if k<0 or k >n then 0; else hypergeom([-2*k,2*k-2*n],[1],-1) ; simplify(%) ; end if; end proc:
A184881 := proc(n) A184879(2*n,n)-A184879(2*n,n+1) ; end proc:
seq(A184881(n),n=0..40) ; # R. J. Mathar, Feb 05 2011
-
h[n_, k_] := HypergeometricPFQ[{-2k, 2k - 2n}, {1}, -1];
a[0] = 1; a[n_] := h[2n, n] - h[2n, n + 1];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Nov 24 2017 *)
A320826
Expansion of x*(1 - 4*x)^(3/2)/(3*x - 1)^2.
Original entry on oeis.org
0, 1, 0, -3, -14, -51, -168, -521, -1542, -4365, -11740, -29439, -65670, -112273, -28344, 1018689, 6961550, 34606929, 151831044, 623095683, 2453975622, 9402575805, 35339538912, 130994480547, 480676041954, 1750847208621, 6343667488692, 22899720430251, 82466180250590
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!(x*(1-4*x)^(3/2)/(1-3*x)^2)); // G. C. Greubel, Oct 27 2018
-
c := n -> (-4)^(n-1)*binomial(3/2, n-1):
h := n -> hypergeom([2, 1 - n], [7/2 - n], 3/4):
A320826 := n -> c(n)*h(n): seq(simplify(A320826(n)), n=0..28);
-
CoefficientList[Series[(x (1 - 4 x)^(3/2))/(3 x - 1)^2, {x, 0, 28}], x]
-
x='x+O('x^30); concat([0], Vec(x*(1-4*x)^(3/2)/(1-3*x)^2)) \\ G. C. Greubel, Oct 27 2018
A020931
Expansion of (1-4*x)^(19/2).
Original entry on oeis.org
1, -38, 646, -6460, 41990, -184756, 554268, -1108536, 1385670, -923780, 184756, 33592, 16796, 12920, 12920, 15504, 21318, 32604, 54340, 97240, 184756, 369512, 772616, 1679600, 3779100, 8767512, 20907144, 51106352, 127765880, 326023280, 847660528, 2242198816
Offset: 0
-
CoefficientList[Series[(1-4x)^(19/2),{x,0,30}],x] (* Harvey P. Dale, Jul 03 2013 *)
A085687
Expansion of g.f. 8/(1+sqrt(1-8*x))^3.
Original entry on oeis.org
1, 6, 36, 224, 1440, 9504, 64064, 439296, 3055104, 21498880, 152807424, 1095450624, 7911587840, 57511157760, 420459724800, 3089600348160, 22806128885760, 169033661153280, 1257467341701120, 9385880636620800, 70271680244613120, 527595313582571520
Offset: 0
-
CoefficientList[Series[8/(1 + Sqrt[1 - 8*x])^3, {x, 0, 21}], x] (* Amiram Eldar, Mar 24 2022 *)
A182411
Triangle T(n,k) = (2*k)!*(2*n)!/(k!*n!*(k+n)!) with k=0..n, read by rows.
Original entry on oeis.org
1, 2, 2, 6, 4, 6, 20, 10, 12, 20, 70, 28, 28, 40, 70, 252, 84, 72, 90, 140, 252, 924, 264, 198, 220, 308, 504, 924, 3432, 858, 572, 572, 728, 1092, 1848, 3432, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 48620, 9724, 5304, 4420, 4760, 6120, 8976
Offset: 0
Triangle begins:
1;
2, 2;
6, 4, 6;
20, 10, 12, 20;
70, 28, 28, 40, 70;
252, 84, 72, 90, 140, 252;
924, 264, 198, 220, 308, 504, 924;
3432, 858, 572, 572, 728, 1092, 1848, 3432;
12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870;
48620, 9724, 5304, 4420, 4760, 6120, 8976, 14586, 25740, 48620;
...
Sum_{k=0..8} T(8,k) = 12870 + 2860 + 1716 + 1560 + 1820 + 2520 + 3960 + 6864 + 12870 = 2*A132310(7) + A000984(8) = 2*17085 + 12870 = 47040.
- Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 103.
- Alexander Borisov, Quotient singularities, integer ratios of factorials and the Riemann Hypothesis, arXiv:math/0505167 [math.NT], 2005; International Mathematics Research Notices, Vol. 2008, Article ID rnn052, page 2 (Theorem 2).
- Ira Gessel, Integer quotients of factorials and algebraic multivariable hypergeometric series, MIT Combinatorics Seminar, September 2011 (slides).
- Hans-Christian Herbig and Mateus de Jesus Gonçalves, On the numerology of trigonometric polynomials, arXiv:2311.13604 [math.HO], 2023.
- Kevin Limanta and Norman Wildberger, Super Catalan Numbers, Chromogeometry, and Fourier Summation over Finite Fields, arXiv:2108.10191 [math.CO], 2021. See Table 1 p. 2 where terms are shown as an array.
-
[Factorial(2*k)*Factorial(2*n)/(Factorial(k)*Factorial(n)*Factorial(k+n)): k in [0..n], n in [0..9]];
-
Flatten[Table[Table[(2 k)! ((2 n)!/(k! n! (k + n)!)), {k, 0, n}], {n, 0, 9}]]
A232546
Expansion of (1 - 12*x)^(3/2) in powers of x.
Original entry on oeis.org
1, -18, 54, 108, 486, 2916, 20412, 157464, 1299078, 11258676, 101328084, 939587688, 8926083036, 86514343272, 852784240824, 8527842408240, 86344404383430, 883760374277460, 9132190534200420, 95167038198509640, 999253901084351220, 10563541240034570040
Offset: 0
G.f. = 1 - 18*x + 54*x^2 + 108*x^3 + 486*x^4 + 2916*x^5 + 20412*x^6 + ...
-
a[ n_] := SeriesCoefficient[ (1 - 12 x)^(3/2), {x, 0, n}];
Table[9/Sqrt[Pi] 12^n Gamma[-1/2 + n]/Gamma[2 + n], {n, -1, 20}] (* Ralf Steiner, Apr 01 2017 *)
Flatten[{1, -18, Table[4*3^(n+1)*(2*n-4)!/((n-2)!*n!), {n, 2, 25}]}] (* Vaclav Kotesovec, Apr 02 2017 *)
-
{a(n) = if( n<0, 0, polcoeff( (1 - 12 * x + x * O(x^n))^(3/2), n))};
A020933
Expansion of (1-4*x)^(21/2).
Original entry on oeis.org
1, -42, 798, -9044, 67830, -352716, 1293292, -3325608, 5819814, -6466460, 3879876, -705432, -117572, -54264, -38760, -36176, -40698, -52668, -76076, -120120, -204204, -369512, -705432, -1410864, -2939300, -6348888, -14162904, -32522224, -76659528, -185040240
Offset: 0
Cf.
A001622,
A002420,
A002421,
A002422,
A002423,
A002424,
A020923,
A020925,
A020927,
A020929,
A020931.
-
CoefficientList[Series[Surd[(1-4x)^21,2],{x,0,30}],x] (* Harvey P. Dale, Feb 25 2020 *)
A182534
Array read by antidiagonals: coefficient of the Euler-Mascheroni constant in below expression.
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 5, 4, 2, 6, 14, 10, 3, 4, 10, 42, 28, 6, 6, 5, 20, 132, 84, 14, 12, 6, 10, 35, 429, 264, 36, 28, 10, 12, 14, 70, 1430, 858, 99, 72, 20, 20, 14, 28, 126, 4862, 2860, 286, 198, 45, 40, 20, 28, 42, 252
Offset: 1
Evaluate: -256/Pi*int(cos(x)^3*log(x)*sin(x)^5/x, x=0..infinity) = 3*eulergamma-log(9/8). Thus the (3,3) entry of the array is 3, the coefficient of the Euler-Mascheroni constant in this expression.
The array begins as:
| 1 1 2 5 14 42 132 429 ... |
| 2 2 4 10 28 84 264 858 ... |
| 3 2 3 6 14 36 99 286 ... |
| 6 4 6 12 28 72 198 572 ... |
| 10 5 6 10 20 45 110 286 ... |
| 20 10 12 20 40 90 220 572 ... |
| 35 14 14 20 35 70 154 364 ... |
| 70 28 28 40 70 140 308 728 ... |
| ... ... ... ... ... ... ... ... ... |
-
A[a_, b_] :=
A[a, b] =
Array[Coefficient[
Integrate[
Log[x]*Cos[x]^#1*Sin[x]^(2 #2 - 1)/x, {x, 0,
Infinity}] (2^(#1 + 2 #2 - 1))/(-\[Pi]), EulerGamma] &, {a, b}];
A[11, 11];
Print[A[11, 11] // MatrixForm];
Table2 = {};
k = 1;
While[k < 11, Table1 = {};
i = 1;
j = k;
While[0 < j,
AppendTo[Table1,
First[Take[First[Take[A[11, 11], {i, i}]], {j, j}]]];
j = j - 1;
i = i + 1];
AppendTo[Table2, Table1];
k++];
Print[Flatten[Table2]]
Comments