cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A020929 Expansion of (1-4*x)^(17/2).

Original entry on oeis.org

1, -34, 510, -4420, 24310, -87516, 204204, -291720, 218790, -48620, -9724, -5304, -4420, -4760, -6120, -8976, -14586, -25740, -48620, -97240, -204204, -447304, -1016600, -2386800, -5768100, -14304888, -36312408, -94143280, -248807240, -669205680, -1829162192
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 4 x)^(17/2), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 18 2020 *)

Formula

D-finite with recurrence: n*a(n) +2*(-2*n+19)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(17/2, n).
Sum_{n>=0} 1/a(n) = 49600/51051 - 38*Pi/(3^11*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 1542987607648/1495634765625 - 76*log(phi)/(5^10*sqrt(5)), where phi is the golden ratio (A001622). (End)

A320827 G.f.: -sqrt(1 - 4*x)*(2*x - 1)/(3*x - 1).

Original entry on oeis.org

-1, 1, 1, 3, 11, 41, 151, 549, 1977, 7075, 25229, 89831, 319881, 1140523, 4075321, 14603243, 52501659, 189440937, 686181711, 2495243373, 9109701699, 33388293177, 122840931891, 453622854873, 1681057537359, 6250742452125, 23316503569983, 87236431248445
Offset: 0

Views

Author

Peter Luschny, Oct 23 2018

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Sqrt(1-4*x)*(1-2*x)/(3*x-1))); // G. C. Greubel, Oct 27 2018
  • Maple
    ogf := x -> -sqrt(1 - 4*x)*(2*x - 1)/(3*x - 1);
    ser := series(ogf(x), x, 30); seq(coeff(ser, x, k), k=0..27);
    # By recurrence:
    a := proc(n) option remember; if n <= 4 then return [-1,1,1,3,11][n+1] fi;
    ((-90+66*n-12*n^2)*a(n-2)+(30-34*n+7*n^2)*a(n-1))/((n-4)*n) end:
    seq(a(n), n=0..27);
  • Mathematica
    a[n_] := (-4)^n Binomial[3/2,n]((4/3)n - 2 + Hypergeometric2F1[1,-n, 5/2 - n, 3/4]); Table[a[n], {n, 0, 27}]
    CoefficientList[Series[Sqrt[1-4*x]*(1-2*x)/(3*x-1), {x, 0, 40}], x] (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    x='x+O('x^40); Vec(sqrt(1-4*x)*(1-2*x)/(3*x-1)) \\ G. C. Greubel, Oct 27 2018
    

Formula

a(n) = (-4)^n*binomial(3/2, n)*((4/3)*n - 2 + hypergeom([1, -n], [5/2 - n], 3/4)).
D-finite with recurrence: a(n) = ((-90+66*n-12*n^2)*a(n-2) + (30-34*n+7*n^2)*a(n-1))/((n-4)*n) for n >= 5.
Expansion of -1/g.f. gives A029759.
a(n) = A320825(n) - A320826(n).

A184881 a(n) = A184879(2*n, n) - A184879(2*n, n+1) where A184879(n, k) = Hypergeometric2F1(-2*k, 2*k-2*n, 1, -1) if 0<=k<=n.

Original entry on oeis.org

1, -3, 2, -3, 6, -14, 36, -99, 286, -858, 2652, -8398, 27132, -89148, 297160, -1002915, 3421710, -11785890, 40940460, -143291610, 504932340, -1790214660, 6382504440, -22870640910, 82334307276, -297670187844, 1080432533656, -3935861372604, 14386251913656
Offset: 0

Views

Author

Paul Barry, Jan 24 2011

Keywords

Comments

Hankel transform is A184882.
Signed version of A007054. - Philippe Deléham, Mar 19 2014

Examples

			a(0) = 1;
a(1) = 1 - 4*1 = -3;
a(2) = 4*1 - 2 = 2;
a(3) = 5 - 4*2 = -3;
a(4) = 4*5 - 14 = 6;
a(5) = 42 - 4*14 = -14;
a(6) = 4*42 - 132 = 36;
a(7) = 429 - 4*132 = -99;
a(8) = 4*429 - 1430 = 286, etc; with A000108 = 1,1,2,5,14,42,132,429,1430, ... - _Philippe Deléham_, Mar 19 2014
G.f. = 1 - 3*x + 2*x^2 - 3*x^3 + 6*x^4 - 14*x^5 + 36*x^6 - 99*x^7 + ... - _Michael Somos_, Mar 13 2023
		

Crossrefs

Programs

  • Maple
    A184879 := proc(n,k) if k<0 or k >n then 0; else hypergeom([-2*k,2*k-2*n],[1],-1) ; simplify(%) ; end if; end proc:
    A184881 := proc(n) A184879(2*n,n)-A184879(2*n,n+1) ; end proc:
    seq(A184881(n),n=0..40) ; # R. J. Mathar, Feb 05 2011
  • Mathematica
    h[n_, k_] := HypergeometricPFQ[{-2k, 2k - 2n}, {1}, -1];
    a[0] = 1; a[n_] := h[2n, n] - h[2n, n + 1];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Nov 24 2017 *)

Formula

a(n) = 0^n + Sum_{k=0..2n} (C(2n,k)^2-C(2n+2,k)*C(2n-2,k))*(-1)^k.
G.f.: (8*x+1-sqrt(1+4*x)^3)/(2*x). - Philippe Deléham, Mar 19 2014
a(0) = 1, a(n) = (-1)^n*A007054(n-1) for n>0. - Philippe Deléham, Mar 19 2014
(n+1)*a(n) +2*(2*n-3)*a(n-1)=0. - R. J. Mathar, Nov 19 2014
a(n) = (-1)^n*A002421(n+1)/2 and 0 = a(n)*(+16*a(n+1) + 14*a(n+2)) + a(n+1)*(-6*a(n+1) + a(n+2)) for all n>0. - Michael Somos, Mar 13 2023

A320826 Expansion of x*(1 - 4*x)^(3/2)/(3*x - 1)^2.

Original entry on oeis.org

0, 1, 0, -3, -14, -51, -168, -521, -1542, -4365, -11740, -29439, -65670, -112273, -28344, 1018689, 6961550, 34606929, 151831044, 623095683, 2453975622, 9402575805, 35339538912, 130994480547, 480676041954, 1750847208621, 6343667488692, 22899720430251, 82466180250590
Offset: 0

Views

Author

Peter Luschny, Oct 22 2018

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!(x*(1-4*x)^(3/2)/(1-3*x)^2)); // G. C. Greubel, Oct 27 2018
  • Maple
    c := n -> (-4)^(n-1)*binomial(3/2, n-1):
    h := n -> hypergeom([2, 1 - n], [7/2 - n], 3/4):
    A320826 := n -> c(n)*h(n): seq(simplify(A320826(n)), n=0..28);
  • Mathematica
    CoefficientList[Series[(x (1 -  4 x)^(3/2))/(3 x - 1)^2, {x, 0, 28}], x]
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(1-4*x)^(3/2)/(1-3*x)^2)) \\ G. C. Greubel, Oct 27 2018
    

Formula

a(n) = c(n)*h(n) where c(n) = Catalan(n)*(3*n*(n + 1))/(2*(2*n-5)*(2*n-3)*(2*n-1)) = (-4)^(n-1)*binomial(3/2, n-1) and h(n) = hypergeom([2, 1 - n], [7/2 - n], 3/4).
A320826(n) = A320825(n) - A320827(n).

A020931 Expansion of (1-4*x)^(19/2).

Original entry on oeis.org

1, -38, 646, -6460, 41990, -184756, 554268, -1108536, 1385670, -923780, 184756, 33592, 16796, 12920, 12920, 15504, 21318, 32604, 54340, 97240, 184756, 369512, 772616, 1679600, 3779100, 8767512, 20907144, 51106352, 127765880, 326023280, 847660528, 2242198816
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4x)^(19/2),{x,0,30}],x] (* Harvey P. Dale, Jul 03 2013 *)

Formula

D-finite with recurrence: n*a(n) +2*(-2*n+21)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(19/2, n).
Sum_{n>=0} 1/a(n) = 45052/46189 + 14*Pi/(3^11*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 6955761045148/6765966796875 - 84*log(phi)/(5^11*sqrt(5)), where phi is the golden ratio (A001622). (End)

A085687 Expansion of g.f. 8/(1+sqrt(1-8*x))^3.

Original entry on oeis.org

1, 6, 36, 224, 1440, 9504, 64064, 439296, 3055104, 21498880, 152807424, 1095450624, 7911587840, 57511157760, 420459724800, 3089600348160, 22806128885760, 169033661153280, 1257467341701120, 9385880636620800, 70271680244613120, 527595313582571520
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2003

Keywords

Comments

a(n) is also the number of paths of length 2(n+1) in a binary tree between two vertices that are 2 steps apart. [David Koslicki (koslicki(AT)math.psu.edu), Nov 02 2010]

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[8/(1 + Sqrt[1 - 8*x])^3, {x, 0, 21}], x] (* Amiram Eldar, Mar 24 2022 *)

Formula

a(n) = 6(n+1)*2^(n-2)*Cat(n+2)/(2n+3), where Cat(n)=A000108(n). - Ralf Stephan, Mar 11 2004
G.f.: c(2x)^3, where c(x) is the g.f. of A000108; a(n)=3(n+1)2^n*Cat(n+1)/(n+3); - Paul Barry, Dec 08 2004
a(n) = (n+1) * A000257(n+1). - F. Chapoton, Feb 26 2024
D-finite with recurrence: (n+3)*a(n) -2*(5*n+7)*a(n-1) +8*(2*n-1)*a(n-2)=0. - R. J. Mathar, Nov 15 2011
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 22/49 + 808*arcsin(1/(2*sqrt(2)))/(147*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 26/81 + 376*arcsinh(1/(2*sqrt(2)))/243. (End)

A182411 Triangle T(n,k) = (2*k)!*(2*n)!/(k!*n!*(k+n)!) with k=0..n, read by rows.

Original entry on oeis.org

1, 2, 2, 6, 4, 6, 20, 10, 12, 20, 70, 28, 28, 40, 70, 252, 84, 72, 90, 140, 252, 924, 264, 198, 220, 308, 504, 924, 3432, 858, 572, 572, 728, 1092, 1848, 3432, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 48620, 9724, 5304, 4420, 4760, 6120, 8976
Offset: 0

Views

Author

Bruno Berselli, Apr 27 2012

Keywords

Comments

This is a companion to the triangle A068555.
Row sum is 2*A132310(n-1) + A000984(n) for n>0, where A000984(n) = T(n,0) = T(n,n). Also:
T(n,1) = -A002420(n+1).
T(n,2) = A002421(n+2).
T(n,3) = -A002422(n+3) = 2*A007272(n).
T(n,4) = A002423(n+4).
T(n,5) = -A002424(n+5).
T(n,6) = A020923(n+6).
T(n,7) = -A020925(n+7).
T(n,8) = A020927(n+8).
T(n,9) = -A020929(n+9).
T(n,10) = A020931(n+10).
T(n,11) = -A020933(n+11).

Examples

			Triangle begins:
      1;
      2,    2;
      6,    4,    6;
     20,   10,   12,   20;
     70,   28,   28,   40,   70;
    252,   84,   72,   90,  140,  252;
    924,  264,  198,  220,  308,  504,  924;
   3432,  858,  572,  572,  728, 1092, 1848,  3432;
  12870, 2860, 1716, 1560, 1820, 2520, 3960,  6864, 12870;
  48620, 9724, 5304, 4420, 4760, 6120, 8976, 14586, 25740, 48620;
  ...
Sum_{k=0..8} T(8,k) = 12870 + 2860 + 1716 + 1560 + 1820 + 2520 + 3960 + 6864 + 12870 = 2*A132310(7) + A000984(8) = 2*17085 + 12870 = 47040.
		

References

  • Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 103.

Crossrefs

Programs

  • Magma
    [Factorial(2*k)*Factorial(2*n)/(Factorial(k)*Factorial(n)*Factorial(k+n)): k in [0..n], n in [0..9]];
  • Mathematica
    Flatten[Table[Table[(2 k)! ((2 n)!/(k! n! (k + n)!)), {k, 0, n}], {n, 0, 9}]]

A232546 Expansion of (1 - 12*x)^(3/2) in powers of x.

Original entry on oeis.org

1, -18, 54, 108, 486, 2916, 20412, 157464, 1299078, 11258676, 101328084, 939587688, 8926083036, 86514343272, 852784240824, 8527842408240, 86344404383430, 883760374277460, 9132190534200420, 95167038198509640, 999253901084351220, 10563541240034570040
Offset: 0

Views

Author

Michael Somos, Nov 25 2013

Keywords

Comments

From Ralf Steiner, Apr 04 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums such as:
Sum_{k>=0} a(k)^2/16^k = 2F1(-3/2,-3/2,1,9).
Sum_{k>=0} a(k) / 6^k = -i. (End)

Examples

			G.f. = 1 - 18*x + 54*x^2 + 108*x^3 + 486*x^4 + 2916*x^5 + 20412*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1 - 12 x)^(3/2), {x, 0, n}];
    Table[9/Sqrt[Pi] 12^n Gamma[-1/2 + n]/Gamma[2 + n], {n, -1, 20}] (* Ralf Steiner, Apr 01 2017 *)
    Flatten[{1, -18, Table[4*3^(n+1)*(2*n-4)!/((n-2)!*n!), {n, 2, 25}]}] (* Vaclav Kotesovec, Apr 02 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - 12 * x + x * O(x^n))^(3/2), n))};

Formula

0 = a(n+2)*(a(n+1) - 42*a(n)) + 18*a(n+1)*(a(n+1) + 8*a(n)) for all n in Z.
a(n+2) = 54 * A000168(n). a(n) = 3^n * A002421(n). Convolution inverse of A115903.
a(n) = 6*(2*n-5)*a(n-1)/n. - R. J. Mathar, Nov 23 2014
G.f.: 1F0(-3/2;;12x). - R. J. Mathar, Aug 09 2015
For n>=2, a(n) = 4*3^(n+1)*(2*n-4)! / ((n-2)!*n!). - Vaclav Kotesovec, Apr 02 2017
Sum_{k>=0} a(k) / 12^k = 0. - Ralf Steiner, Apr 04 2017

A020933 Expansion of (1-4*x)^(21/2).

Original entry on oeis.org

1, -42, 798, -9044, 67830, -352716, 1293292, -3325608, 5819814, -6466460, 3879876, -705432, -117572, -54264, -38760, -36176, -40698, -52668, -76076, -120120, -204204, -369512, -705432, -1410864, -2939300, -6348888, -14162904, -32522224, -76659528, -185040240
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Surd[(1-4x)^21,2],{x,0,30}],x] (* Harvey P. Dale, Feb 25 2020 *)

Formula

D-finite with recurrence: n*a(n) +2*(-2*n+23)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(21/2, n).
Sum_{n>=0} 1/a(n) = 406240/415701 - 46*Pi/(3^13*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 728323714975904/710426513671875 - 92*log(phi)/(5^12*sqrt(5)), where phi is the golden ratio (A001622). (End)

A182534 Array read by antidiagonals: coefficient of the Euler-Mascheroni constant in below expression.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 5, 4, 2, 6, 14, 10, 3, 4, 10, 42, 28, 6, 6, 5, 20, 132, 84, 14, 12, 6, 10, 35, 429, 264, 36, 28, 10, 12, 14, 70, 1430, 858, 99, 72, 20, 20, 14, 28, 126, 4862, 2860, 286, 198, 45, 40, 20, 28, 42, 252
Offset: 1

Views

Author

John M. Campbell, May 05 2012

Keywords

Comments

The (i,j)-entry of the array is the coefficient of the Euler-Mascheroni constant in: -2^(i+2j-1)/Pi*int(log(x)*cos(x)^i*sin(x)^(2j-1)/x, x=0..infinity); see Mathematica code below.
First row: A000108.
Second row: -A002420.
Third row: A007054.
Fourth row: A002421.
Fifth row: A007272.
Sixth row: -A002422.
Eighth row: A002423.
First column: A001405.
Second column: A089408.
Odd entries on main diagonal: A126596.

Examples

			Evaluate: -256/Pi*int(cos(x)^3*log(x)*sin(x)^5/x, x=0..infinity) = 3*eulergamma-log(9/8). Thus the (3,3) entry of the array is 3, the coefficient of the Euler-Mascheroni constant in this expression.
The array begins as:
| 1   1   2   5   14  42  132 429  ... |
| 2   2   4   10  28  84  264 858  ... |
| 3   2   3   6   14  36  99  286  ... |
| 6   4   6   12  28  72  198 572  ... |
| 10  5   6   10  20  45  110 286  ... |
| 20  10  12  20  40  90  220 572  ... |
| 35  14  14  20  35  70  154 364  ... |
| 70  28  28  40  70  140 308 728  ... |
| ... ... ... ... ... ... ... ...  ... |
		

Crossrefs

Programs

  • Mathematica
    A[a_, b_] :=
      A[a, b] =
       Array[Coefficient[
          Integrate[
            Log[x]*Cos[x]^#1*Sin[x]^(2 #2 - 1)/x, {x, 0,
             Infinity}] (2^(#1 + 2 #2 - 1))/(-\[Pi]), EulerGamma] &, {a, b}];
    A[11, 11];
    Print[A[11, 11] // MatrixForm];
    Table2 = {};
    k = 1;
    While[k < 11, Table1 = {};
      i = 1;
      j = k;
      While[0 < j,
        AppendTo[Table1,
        First[Take[First[Take[A[11, 11], {i, i}]], {j, j}]]];
        j = j - 1;
        i = i + 1];
        AppendTo[Table2, Table1];
        k++];
    Print[Flatten[Table2]]
Previous Showing 11-20 of 21 results. Next