cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 301 results. Next

A111960 Renewal array for central trinomial numbers A002426.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 7, 3, 1, 19, 20, 12, 4, 1, 51, 61, 40, 18, 5, 1, 141, 182, 135, 68, 25, 6, 1, 393, 547, 441, 251, 105, 33, 7, 1, 1107, 1640, 1428, 888, 420, 152, 42, 8, 1, 3139, 4921, 4572, 3076, 1596, 654, 210, 52, 9, 1, 8953, 14762, 14535, 10456, 5880, 2652, 966, 280, 63, 10, 1
Offset: 0

Views

Author

Paul Barry, Aug 23 2005

Keywords

Comments

Also the convolution triangle of A002426. - Peter Luschny, Oct 06 2022

Examples

			Triangle T(n,k) begins:
   1;
   1,  1;
   3,  2,  1;
   7,  7,  3,  1;
  19, 20, 12,  4, 1;
  51, 61, 40, 18, 5, 1;
  ...
From _Paul Barry_, May 12 2009: (Start)
Production matrix is
  1, 1,
  2, 1, 1,
  0, 2, 1, 1,
  -2, 0, 2, 1, 1,
  0, -2, 0, 2, 1, 1,
  4, 0, -2, 0, 2, 1, 1. (End)
		

Crossrefs

Row sums are A111961.
Diagonal sums are A111962.
Inverse is A111963.
Factors as A007318*A111959.
Column k=0 gives A002426.
Cf. A026325.

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds a row and column above and to the left.
    PMatrix(10, n -> A002426(n - 1)); # Peter Luschny, Oct 06 2022

Formula

Factors as (1/(1-x), x/(1-x))*(1/sqrt(1-4x^2), x/sqrt(1-4x^2)).
From Paul Barry, May 12 2009: (Start)
Equals ((1-x^2)/(1+x+x^2),x/(1+x+x^2))^{-1}*(1,x/(1-x^2))=A094531*(1,x/(1-x^2)).
Riordan array (1/sqrt(1-2x-3x^2), x/sqrt(1-2x-3x^2));
T(n,k) = Sum_{j=0..n} C(n,j)*C((j-1)/2,(j-k)/2)*2^(j-k)*(1+(-1)^(j-k))/2.
G.f.: 1/(1-xy-x-2x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-... (continued fraction). (End)

A113304 Primes that divide some central trinomial coefficient, A002426.

Original entry on oeis.org

3, 7, 17, 19, 41, 43, 47, 73, 107, 109, 113, 131, 173, 179, 191, 193, 199, 233, 269, 277, 281, 283, 293, 307, 311, 347, 373, 383, 401, 409, 419, 421, 439, 443, 457, 467, 503, 509, 521, 547, 563, 569, 593, 613, 617, 631, 653, 673, 691, 701, 709, 719, 739, 743
Offset: 1

Views

Author

T. D. Noe, Oct 24 2005

Keywords

Comments

For primes less than 10^6, the density of these primes is near 0.3925.

Crossrefs

Cf. A113302 (number of k for which prime(n) divides T(k)), A113303 (least k such that prime(n) divides T(k)).

Programs

  • Mathematica
    nn=1000; a=b=1; t=Join[{1}, Table[c=((2n-1)b+3(n-1)a)/n; a=b; b=c; c, {n, 2, nn}]]; pLst={}; Do[p=Prime[n]; k=1; While[k

    0, k++ ]; If[k

A113305 Primes that do not divide any central trinomial coefficient, A002426.

Original entry on oeis.org

2, 5, 11, 13, 23, 29, 31, 37, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 127, 137, 139, 149, 151, 157, 163, 167, 181, 197, 211, 223, 227, 229, 239, 241, 251, 257, 263, 271, 313, 317, 331, 337, 349, 353, 359, 367, 379, 389, 397, 431, 433, 449, 461, 463, 479
Offset: 1

Views

Author

T. D. Noe, Oct 24 2005

Keywords

Comments

For primes less than 10^6, the density of these primes is near 0.6075.

Crossrefs

Cf. A113302 (number of k for which prime(n) divides T(k)), A113303 (least k such that prime(n) divides T(k)).

Programs

  • Mathematica
    nn=1000; a=b=1; t=Join[{1}, Table[c=((2n-1)b+3(n-1)a)/n; a=b; b=c; c, {n, 2, nn}]]; pLst={}; Do[p=Prime[n]; k=1; While[k

    0, k++ ]; If[k==p, AppendTo[pLst, p]], {n, PrimePi[nn]}]; pLst

A168599 G.f.: exp( Sum_{n>=1} A002426(n)^n * x^n/n ), where A002426(n) is the central trinomial coefficients.

Original entry on oeis.org

1, 1, 5, 119, 32707, 69038213, 1309743837515, 206848589180297555, 281897548265847120670891, 3287603007740009094151486257065, 330891681467139744269091005122077348971
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2009

Keywords

Comments

Compare to: exp( Sum_{n>=1} A002426(n)*x^n/n ) = g.f. of the Motzkin numbers (A001006).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 119*x^3 + 32707*x^4 +...
log(A(x)) = x + 9*x^2/2 + 343*x^3/3 + 130321*x^4/4 +...+ A002426(n)^n*x^n/n +...
		

Crossrefs

Programs

  • Magma
    m:=30;
    A002426:= func< n | (&+[ Binomial(n, k)*Binomial(k, n-k): k in [0..n]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!( Exp( (&+[A002426(j)^j*x^j/j: j in [1..m+2]]) ) )); // G. C. Greubel, Mar 16 2021
    
  • Maple
    m:=30;
    A002426:= n-> add( binomial(n, k)*binomial(k, n-k), k=0..n );
    S := series( exp(add(A002426(j)^j*x^j/j, j = 1..m+2)), x, m+1);
    seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Mar 16 2021
  • Mathematica
    A002426[n_] := GegenbauerC[n, -n, -1/2];
    With[{m=30}, CoefficientList[Series[Exp[Sum[A002426[j]^j*x^j/j, {j, m+2}]], {x, 0, m}], x]] (* G. C. Greubel, Mar 16 2021 *)
  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,polcoeff((1+x+x^2)^m,m)^m*x^m/m)+x*O(x^n)),n))}
    
  • Sage
    m=30
    def A002426(n): return sum( binomial(n, k)*binomial(k, n-k) for k in (0..n) )
    def A168598_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp( sum( A002426(j)^j*x^j/j for j in [1..m+2])) ).list()
    A168598_list(m) # G. C. Greubel, Mar 16 2021

A102445 Number of prime divisors (counted with multiplicity) of the central trinomial coefficients (A002426).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 3, 4, 6, 3, 2, 3, 3, 5, 6, 6, 4, 9, 3, 3, 2, 3, 3, 4, 5, 3, 5, 4, 2, 3, 3, 4, 2, 7, 5, 7, 7, 5, 5, 6, 6, 4, 5, 8, 9, 4, 5, 6, 3, 3, 7, 6, 8, 7, 7, 4, 5, 4, 4, 7, 7, 9, 11, 5, 8, 7, 7, 6, 7, 7, 8, 12, 4, 7, 6, 6, 4, 8, 7, 4, 10, 7, 7, 6, 6, 7, 5, 5, 6, 8, 7, 9, 10, 5, 7
Offset: 1

Views

Author

Jonathan Vos Post, Feb 21 2005

Keywords

Comments

First occurrence of k: 1,2,5,11,8,22,17,42,52,26,89,71,80,....

Crossrefs

Programs

  • Mathematica
    bigomega[n_Integer] := Plus @@ Last /@ FactorInteger[n]; tn[n_] := Sum[Binomial[n, k]*Binomial[n - k, k], {k, 0, n/2}]; Table[bigomega[tn[n]], {n, 103}] (* Robert G. Wilson v, Feb 21 2005 *)

Formula

a(n) = A001222(A002426(n)). - Amiram Eldar, Feb 06 2020

Extensions

Edited and extended by Robert G. Wilson v, Feb 21 2005

A135091 A007318 * triangle M, where M = A002426 * 0^(n-k), 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 7, 1, 4, 18, 28, 19, 1, 5, 30, 70, 95, 51, 1, 6, 45, 140, 285, 306, 141, 1, 7, 63, 245, 665, 1071, 987, 393, 1, 8, 84, 392, 1330, 2856, 3948, 3144, 1107, 1, 9, 108, 588, 2394, 6426, 11844, 14148, 9963, 3139
Offset: 0

Views

Author

Gary W. Adamson, Nov 18 2007

Keywords

Comments

Right border = A002426.
Row sums = A000984: (1, 2, 6, 20, 70, 252, ...).
The n-th row of this triangle lists the coefficients of the polynomial: p := (1/Pi)*Integral_{s=0..Pi} (1 + t - 2*t*cos(s))^n; Pi / 1 | n p := ---- | (1 + t - 2 t cos(s)) ds Pi | / 0 for example n=5 then 4 2 3 p = 19 t + 18 t + 28 t + 4 t + 1. - Theodore Kolokolnikov, Oct 09 2010

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  9,   7;
  1, 4, 18,  28,  19;
  1, 5, 30,  70,  95,   51;
  1, 6, 45, 140, 285,  306, 141;
  1, 7, 63, 245, 665, 1071, 987, 393;
  ...
		

Crossrefs

Formula

A007318 * triangle M, where M = A002426 * 0^(n-k), 0 <= k <= n; i.e., M = an infinite lower triangular matrix with A002426 as the right border and the rest zeros.
O.g.f. appears to be (1/sqrt(1-t*(1-x)))*1/sqrt(1-t*(1+3*x)) = 1 + (1+x)*t + (1 + 2*x + 3*x^2)*t^2 + ....
See A098473.

A168598 G.f.: exp( Sum_{n>=1} A002426(n)^2*x^n/n ), where A002426(n) is the central trinomial coefficients.

Original entry on oeis.org

1, 1, 5, 21, 119, 703, 4515, 30227, 210274, 1503930, 11008198, 82099262, 622013122, 4775754930, 37089503826, 290914775618, 2301706690657, 18351027768401, 147308337621061, 1189704370416949, 9661185599013209, 78844977025403657
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2009

Keywords

Comments

Compare to: exp( Sum_{n>=1} A002426(n)*x^n/n ) = g.f. of the Motzkin numbers (A001006).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 21*x^3 + 119*x^4 + 703*x^5 +...
log(A(x)) = x + 9*x^2/2 + 49*x^3/3 + 361*x^4/4 + 2601*x^5/5 + 19881*x^6/6 +...+ A002426(n)^2*x^n/n +...
		

Crossrefs

Programs

  • Magma
    m:=30;
    A002426:= func< n | (&+[ Binomial(n, k)*Binomial(k, n-k): k in [0..n]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!( Exp( (&+[A002426(j)^2*x^j/j: j in [1..m+2]]) ) )); // G. C. Greubel, Mar 16 2021
    
  • Mathematica
    A002426[n_]:= GegenbauerC[n, -n, -1/2];
    With[{m=30}, CoefficientList[Series[Exp[Sum[A002426[j]^2*x^j/j, {j, m+2}]], {x, 0, m}], x]] (* G. C. Greubel, Mar 16 2021 *)
  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,polcoeff((1+x+x^2)^m,m)^2*x^m/m)+x*O(x^n)),n))}
    
  • Sage
    m=30
    def A002426(n): return sum( binomial(n, k)*binomial(k, n-k) for k in (0..n) )
    def A168598_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp( sum( A002426(j)^2*x^j/j for j in [1..m+2])) ).list()
    A168598_list(m) # G. C. Greubel, Mar 16 2021

A225602 a(n) = A002426(n^2), where A002426 is the central trinomial coefficients.

Original entry on oeis.org

1, 1, 19, 3139, 5196627, 82176836301, 12159131877715993, 16639279789182494873661, 209099036316263774148543463251, 24017537903429183163390175566336055657, 25134265191388162956642519120384003897467908119, 239089990313305548946878880624659134220897530949847409821
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2013

Keywords

Examples

			L.g.f.: L(x) = x + 19*x^2/2 + 3139*x^3/3 + 5196627*x^4/4 + 82176836301*x^5/5 + ...
where exponentiation is an integer series:
exp(L(x)) = 1 + x + 10*x^2 + 1056*x^3 + 1300253*x^4 + 16436676927*x^5 + ... + A225604(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2, k]*Binomial[n^2 - k, k], {k, 0, Floor[n^2/2]}], {n,0,50}] (* G. C. Greubel, Feb 27 2017 *)
  • PARI
    {a(n)=sum(k=0, n^2\2, binomial(n^2, k)*binomial(n^2-k, k))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Logarithmic derivative of A225604 (ignoring the initial term of this sequence).
a(n) = Sum_{k=0..floor(n^2/2)} binomial(n^2, k) * binomial(n^2-k, k).

A386649 Product of first n central trinomial coefficients (A002426) for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 3, 21, 399, 20349, 2869209, 1127599137, 1248252244659, 3918263795984601, 35080215765450132753, 899912775031092255512709, 66403663756769266442027284401, 14140062564030204365431731967633341, 8713488333644640745496899895218790824407
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2025

Keywords

Comments

Conjecture: a(n) = A214589(n) - 2 for n >= 1, where A214589(n) is the number of n X n X n triangular 0..2 arrays with every horizontal row having the same average value.

Examples

			The central trinomial coefficients A002426(n) = [x^n] (1 + x + x^2)^n for n >= 0 begin [1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, ...], where a(n) equals the product of the terms A002426(0) through A002426(n).
		

Crossrefs

Programs

  • Mathematica
    Table[Product[3^k * Hypergeometric2F1[1/2, -k, 1, 4/3], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 09 2025 *)
  • PARI
    {a(n) = prod(k=0,n, polcoef((1 + x + x^2)^k, k) )}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = Product_{k=0..n} A002426(k) for n >= 0.
a(n) ~ c * 3^((n-1)*(n+3)/2) * exp(n/2) / (2^(n - 3/4) * Pi^(n/2 - 1/4) * n^(n/2 + 7/16)), where c = 1.123782729130753266489882099159237662230713685736... - Vaclav Kotesovec, Aug 09 2025

A092690 Row sums of triangle A092689, which is related to the central trinomial coefficients (A002426).

Original entry on oeis.org

1, 2, 7, 22, 71, 226, 717, 2262, 7107, 22246, 69413, 215986, 670441, 2076686, 6420403, 19816362, 61070499, 187953174, 577742469, 1773918642, 5441141589, 16674016758, 51052484343, 156188410098, 477487110429, 1458741494826
Offset: 0

Views

Author

Paul D. Hanna, Mar 04 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn = 50}, CoefficientList[Series[Exp[x]*((1 + x)*BesselI[0, 2*x] + x*BesselI[1, 2*x]), {x,0,nn}], x] Range[0, nn]!] (* G. C. Greubel, Feb 27 2017 *)
  • PARI
    {T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,1, if(k==n-1,T(n-1,0), if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1))))))} a(n)=sum(k=0,n,T(n,k))

Formula

E.g.f.: a(n) = n!* [x^n] exp(x)*((1+x)*BesselI(0, 2*x)+x*BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
Previous Showing 11-20 of 301 results. Next