cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A089170 Numerator of 2*BernoulliB[2*(n+1)]*(4^(n+1)-1)/(2*(n+1))] divided by numerator of the series coefficients of 1/(1 + Cosh[x]).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 527, 1, 1, 1, 1, 31, 1, 1, 731, 1, 41, 1, 1, 1, 37, 1333, 17, 1, 1, 1, 31, 1, 1, 1, 17, 73, 1, 1, 1, 43, 1271, 59, 629, 1, 73, 2759, 43, 1, 1, 1, 17, 1, 67, 7519, 1, 31, 89, 1, 289, 1, 29020032511, 1, 10573, 1, 1, 1, 2227, 486029
Offset: 0

Views

Author

Wouter Meeussen, Dec 07 2003

Keywords

Comments

Ratios of two similar sequences.
This sequence is related to the sequences of the numerators and denominators of the Taylor series for tan(x), i.e., A002430 and A036279, and the similar sequences A160469 and A156769. - Johannes W. Meijer, May 24 2009

Crossrefs

Cf. A002425.
From Johannes W. Meijer, May 24 2009: (Start)
Equals A160469(n+1)/A002430(n+1).
Equals A156769(n+1)/A036279(n+1).
(End)

Programs

  • Maple
    seq(numer(2*bernoulli(2*n)*(4^n-1)/(2*n))/numer((4^n-1)*bernoulli(2*n)/(2*n)!),n=1..100); # C. Ronaldo
  • Mathematica
    Table[Numerator[2*BernoulliB[2*n]*(4^n -1)/(2*n)]/Numerator[SeriesCoefficient[Series[1/(1+Cosh[x]), {x, 0, 2n}], 2n-2]], {n, 1, 128}]

Formula

For n>=0, a(n)=c(n+1) where c(n)=numerator((4^n-1)*B(2*n)/n)/numerator((4^n-1)*B(2*n)/(2*n)!), B(k) denotes the k-th Bernoulli number. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004

A128103 Number of permutations of [n] with an even number of rises.

Original entry on oeis.org

1, 1, 1, 2, 12, 68, 360, 2384, 20160, 185408, 1814400, 19781504, 239500800, 3124694528, 43589145600, 652885305344, 10461394944000, 177948646719488, 3201186852864000, 60808005761859584, 1216451004088320000, 25547946834881282048, 562000363888803840000
Offset: 0

Views

Author

Ralf Stephan, May 09 2007

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, t,
          add(b(u-j, o+j-1, t), j=1..u)+
          add(b(u+j-1, o-j, 1-t), j=1..o))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 29 2015
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, t, Sum[b[u - j, o + j - 1, t], {j, 1, u}] + Sum[b[u + j - 1, o - j, 1 - t], {j, 1, o}]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 25 2017, after Alois P. Heinz *)
  • PARI
    x='x+O('x^99); Vec(serlaplace((x/(1-x)+tanh(x))/2+1)) \\ Altug Alkan, Jul 25 2017

Formula

E.g.f.: 1 + 1/2 [z/(1-z) + tanh(z) ].
a(n) = A000142(n) - A262745(n).
If n is even, a(n) = (n)!/2 (A002674), if n is odd, a(n) = (n)! * (1 + (-1)^((n-1)/2) * A002430((n+1)/2) / A036279((n+1)/2)) / 2. - Michel Marcus, Dec 09 2012
Conjecture: a(n) = Sum_{k = 0..n} Sum_{j = 0..k} (-1)^(n+j)*binomial(n,k-j)*j^n. - Peter Bala, Jan 22 2020

Extensions

More terms from Alois P. Heinz, Sep 29 2015

A131262 a(n) = least index k such that A130654(k) = n.

Original entry on oeis.org

1, 3, 14, 60, 248, 1008
Offset: 0

Views

Author

Alexander Adamchuk, Jun 24 2007

Keywords

Comments

Also a(n) = least index k such that A092505(k) = A002430(k) / A046990(k) = 2^n.
Note that
a(0) = 1 = 1 - 0 = 2^0 - 0;
a(1) = 3 = 4 - 1 = 2^2 - 1;
a(2) = 14 = 16 - 2 = 2^4 - 2;
a(3) = 60 = 64 - 4 = 2^6 - 4;
a(4) = 248 = 256 - 8 = 2^8 - 8.
Conjecture: a(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n).
If this conjecture is true the next term would be a(5) = 1008 = 1024 - 16 = 2^10 - 16.

Examples

			A130654(n) begins
{0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 0, ...}.
Thus a(0) = 1, a(1) = 3, a(2) = 14, a(3) = 60.
		

Crossrefs

Cf. A130654 = Exponent m such that 2^m = A092505(n) = A002430(n) / A046990(n). Cf. A092505 = A002430(n) / A046990(n), n>0. Cf. A002430 = Numerators in Taylor series for tan(x). Cf. A046990 = Numerators of Taylor series for log(1/cos(x)). Cf. A062354 = Sigma(n)*EulerPhi(n).

Formula

Conjecture: a(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n).

Extensions

a(5) = 1008 from Alexander Adamchuk, May 02 2010

A225845 Numerator of c(n) = 2^(2*n)*(2^(2*n) - 1)/(2*n)!, a coefficient used in the expansion of tan(x) as Sum_{n>=1} c(n)*|Bernoulli(2*n)|*x^(2*n-1).

Original entry on oeis.org

0, 6, 10, 28, 34, 1364, 52, 43688, 8738, 5548, 5084, 11184808, 964, 178956968, 143165576, 24790576, 33686018, 22906492244, 1177636, 733007751848, 10115684, 79783156664, 407934748856, 375299968947536, 16173237188, 8804691353608, 2401919801264264
Offset: 0

Views

Author

Jean-François Alcover, May 17 2013

Keywords

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 63.

Crossrefs

Cf. A225846 (denominators), A000367, A002445, A002430, A036279.

Programs

  • Magma
    [Numerator(2^(2*n)*(2^(2*n)-1)/Factorial(2*n)): n in [0..30]]; // Vincenzo Librandi, Jul 17 2013
  • Mathematica
    Table[2^(2*n)*(2^(2*n)-1)/(2*n)! // Numerator, {n, 0, 30}]

A225846 Denominator of c(n) = 2^(2*n)*(2^(2*n) - 1)/(2*n)!, a coefficient used in the expansion of tan(x) as Sum_{n>=1} c(n)*|Bernoulli(2*n)|*x^(2*n-1).

Original entry on oeis.org

1, 1, 1, 5, 21, 4725, 1485, 14189175, 42567525, 516891375, 11249435925, 714620417135625, 2124921731625, 16025362854266390625, 605758715891269565625, 5703572324950265390625, 480509193164339417203125, 22913080876041525109331015625, 92765509619601316232109375
Offset: 0

Views

Author

Jean-François Alcover, May 17 2013

Keywords

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 63.

Crossrefs

Cf. A225845 (numerators), A000367, A002445, A002430, A036279.

Programs

  • Magma
    [Denominator(2^(2*n)*(2^(2*n)-1)/Factorial(2*n)): n in [0..20]]; // Vincenzo Librandi, Jul 17 2013
  • Mathematica
    Table[2^(2*n)*(2^(2*n)-1)/(2*n)! // Denominator, {n, 0, 20}]

A367518 Numerators of even-numbered Maclaurin coefficients of sqrt(tan(x)/x).

Original entry on oeis.org

1, 1, 19, 55, 11813, 2117, 64604977, 263101079, 1768132943, 9606907803497, 158812278992229461, 9112944418860287, 2117852079027536379043, 27841657661565660151, 909416652267282749299777, 26176589384334728915393123, 22901449589921151647801250738173, 514908297269179169530303586629
Offset: 0

Views

Author

Robert Israel, Nov 21 2023

Keywords

Comments

Numerators of Maclaurin coefficients of sqrt(tan(sqrt(x)))/x^(1/4).

Examples

			sqrt(tan(x)/x) = 1 + (1/6) * x^2 + (19/360) * x^4 + (55/3024) * x^6 + ...
		

Crossrefs

Programs

  • Maple
    S:= series(sqrt(tan(x)/x), x, 41):
    seq(numer(coeff(S,x,i)),i=0..40,2);
  • Maxima
    b[n]:=if n=0 then 1 else sum(b[n+1-j]*bern(2*j)*((-4)^j-(-16)^j)*((3*j-3)/(2*n)-1)/(2*j)!,j,2,n+1)$ a(n):=num(b[n])$ makelist(a(n),n,0,30); /* Tani Akinari, Feb 26 2025 */
    
  • PARI
    my(x='x+O('x^40), v=apply(numerator, Vec(sqrt(tan(x)/x)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Feb 26 2025

Formula

sqrt(tan(x)/x) = Sum_{k=0..oo} a(k)/A367519(k) * x^(2*k).
a(n) = numerator(b(n)), where b(n) = Sum_{j=2..n+1} b(n+1-j)*Bernoulli(2*j)*((-4)^j-(-16)^j)*((3*j-3)/(2*n)-1)/(2*j)!, with b(0)=1. - Tani Akinari, Feb 26 2025

A226180 Denominators in Taylor series for integral of tan(x)/x.

Original entry on oeis.org

1, 9, 75, 2205, 25515, 1715175, 79053975, 9577693125, 184530220875, 35266981624875, 4092826025413125, 66711917764366875, 92454016466921484375, 35047468562280596296875, 7641646200968365570359375, 3798425171964103092990703125, 133435000395771234460221796875
Offset: 1

Views

Author

Jean-François Alcover, May 30 2013

Keywords

Comments

Numerators are the same as those from the expansion of tan(x).
Unlike the "sine integral" function Si(x), it seems that there does not exist a "tan integral" function.

Crossrefs

Cf. A002430 (Numerators for tan(x)), A036279 (Denominators for tan(x)), A000367, A002445.

Programs

  • Mathematica
    a[n_] := Denominator[(-1)^(n-1)*4^n*(4^n-1)*BernoulliB[2*n]/(2*n)!]*(2*n-1); Table[a[n], {n, 1, 17}]

Formula

A036279(n)*(2n-1).
Previous Showing 11-17 of 17 results.