cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 73 results. Next

A276975 Number of permutations of [n] such that the minimal distance between elements of the same cycle equals one, a(1)=1 by convention.

Original entry on oeis.org

1, 1, 4, 19, 103, 651, 4702, 38413, 350559, 3539511, 39196758, 472612883, 6165080443, 86526834271, 1300282224846, 20832761552453, 354515666646827, 6386139146435035, 121406489336263622, 2429193186525638435, 51030147426536745655, 1122952442325988152627
Offset: 1

Views

Author

Alois P. Heinz, Sep 23 2016

Keywords

Examples

			a(2) = 1: (1,2).
a(3) = 4: (1,2,3), (1,3,2), (1)(2,3), (1,2)(3).
		

Crossrefs

Column k=1 of A276974.

Programs

  • Maple
    b:= proc(n, i, l) option remember; `if`(n=0, mul(j!, j=l),
          (m-> add(`if`(i=j, 0, b(n-1, j, `if`(j>m, [l[], 0],
            subsop(j=l[j]+1, l)))), j=1..m+1))(nops(l)))
        end:
    a:= n-> `if`(n=1, 1, n!-b(n, 0, [])):
    seq(a(n), n=1..15);
  • Mathematica
    b[n_, i_, l_] := b[n, i, l] = If[n == 0, Product[j!, {j, l}], Function[m, Sum[If[i == j, 0, b[n - 1, j, If[j > m, Append[l, 0], ReplacePart[l, j -> l[[j]] + 1]]]], {j, 1, m + 1}]][Length[l]]];
    a[n_] := If[n == 1, 1, n! - b[n, 0, {}]];
    Array[a, 15] (* Jean-François Alcover, Oct 28 2020, after Maple code *)

A028305 Triangle of numbers of permutations eliminating just k cards out of n in game of Mousetrap.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 2, 9, 6, 3, 0, 6, 44, 31, 19, 11, 0, 15, 265, 180, 105, 54, 32, 0, 84, 1854, 1255, 771, 411, 281, 138, 0, 330, 14833, 9949, 6052, 3583, 2057, 1366, 668, 0, 1812, 133496, 89162, 55340, 32135, 19026, 12685, 6753, 4305, 0, 9978, 1334961, 886837, 547922, 331930, 193538, 117323, 79291, 45536, 25959, 0, 65503
Offset: 0

Views

Author

Keywords

Comments

Triangle T(n,k), 0 <= k <= n

Examples

			Triangle begins:
     1,
     0,    1,
     1,    0,   1,
     2,    2,   0,   2,
     9,    6,   3,   0,   6,
    44,   31,  19,  11,   0,  15,
   265,  180, 105,  54,  32,   0, 84,
  1854, 1255, 771, 411, 281, 138,  0, 330,
  ...
		

References

  • R. K. Guy, Unsolved Problems Number Theory, E37.
  • R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
  • S. Washburn, T. Marlowe and C. T. Ryan, Discrete Mathematics, Addison-Wesley, 1999, page 326.

Crossrefs

Programs

  • Maple
    A028305:=proc(n)
      local P, j, M, K, A, i, K_neu, k, m;
      P:=combinat[permute](n):
      for j from 0 to n do
        M[j]:=0:
      od:
      for j from 1 to nops(P) do
        K:=P[j]:
        A:=[]:
        for i while nops(K)>0 do
          K_neu:=[]:
          for k from 1 to n do
            m:=nops(K);
            if k mod m = 0 then
              if K[m]=k then
                K_neu:=[seq(K[j],j=1..m-1)];
                A:=[op(A),k];
              else next;
              fi;
            else
              if K[k mod m]=k then
                K_neu:=[seq(K[j],j=(k mod m)+1..m),seq(K[j],j=1..(k mod m)-1)];
                A:=[op(A),k];
              else next;
              fi;
            fi;
            if nops(K_neu)<>0 then break; fi;
          od;
          if nops(K_neu)<>0 then
            K:=K_neu;
          else break;
          fi;
        od:
        M[nops(A)]:=M[nops(A)]+1;
      od:
      seq(M[j],j=0..n);
    end:
    # Martin Renner, Sep 03 2015

Formula

T(n,0) = A000166(n), T(n,1) = A007710(n), T(n,n-1) = A000004(n) = 0, T(n,n) = A007709(n).

Extensions

a(36)-a(65) from Martin Renner, Sep 02 2015

A209325 Number of permutations of [n] with a succession but no fixed points.

Original entry on oeis.org

0, 0, 0, 2, 5, 30, 163, 1172, 9349, 84208, 842149, 9266416, 111220875, 1446134218, 20248984181, 303774206310, 4860923772369, 82643503648838, 1487703851220935, 28268359232622252, 565401755237435337, 11874072125853230504, 261241878854832755345, 6008813069875360106928, 144216837237680799509479, 3605539586383814138649074
Offset: 0

Views

Author

Jon Perry, Jan 19 2013

Keywords

Comments

A succession of a permutation p is a position i such that p(i+1)-p(i) = 1.

Examples

			For n=4 we have 2341, 3412, 3421, 4123 and 4312.
		

Crossrefs

Formula

a(n) = A000166(n) - A209322(n).

Extensions

a(11)-a(14) from Alois P. Heinz, Jan 20 2013
a(15)-a(20) from Max Alekseyev, Oct 17 2017
a(21)-a(22) from Alois P. Heinz, Jul 05 2021
Terms a(23) onward from Max Alekseyev, Apr 03 2025

A209326 Number of permutations of [n] with a fixed point but no succession.

Original entry on oeis.org

0, 1, 0, 3, 7, 39, 207, 1437, 11203, 99041, 975645, 10601377, 125905445, 1622349059, 22539777113, 335845307359, 5341990288103, 90340567900583, 1618553943500599, 30623660893656205, 610152486797080443, 12769086757046132625, 280037186109883699885, 6422309829486480886809, 153727262708736577446741, 3833789797689152809143363
Offset: 0

Views

Author

Jon Perry, Jan 19 2013

Keywords

Comments

A succession of a permutation p is a position i such that p(i+1)-p(i) = 1.

Examples

			For n=4 we have 1324, 1432, 2431, 3214, 3241, 4132 and 4213.
		

Crossrefs

Formula

a(n) = A000255(n-1) - A209322(n). - Max Alekseyev, Apr 03 2025

Extensions

a(11)-a(14) from Alois P. Heinz, Jan 20 2013
a(15)-a(21) from Alois P. Heinz, Jul 04 2021
Terms a(22) onward from Max Alekseyev, Apr 03 2025

A007710 From the game of Mousetrap.

Original entry on oeis.org

1, 0, 2, 6, 31, 180, 1255, 9949, 89162, 886837, 9722814, 116236256, 1507191024, 21042127239
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A028305.

Formula

a(n) = A028305((1/2)*(n+1)*(n+2)-n+1). - Martin Renner, Sep 03 2015

Extensions

a(10) from Martin Renner, Sep 02 2015
a(11)-a(14) from Sean A. Irvine, Jan 17 2018

A028306 Triangle read by rows of numbers of permutations eliminating just card k out of n in game of Mousetrap.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 2, 1, 1, 2, 9, 5, 5, 3, 9, 44, 31, 25, 20, 16, 44, 265, 203, 167, 142, 117, 96, 265, 1854, 1501, 1267, 1075, 932, 791, 675, 1854, 14833, 12449, 10745, 9311, 8241, 7132, 6205, 5413, 14833, 133496, 114955, 101005, 88993, 78607, 70340, 62141
Offset: 0

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems Number Theory, E37.
  • R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.

Crossrefs

Diagonals include A000166, A002469. Cf. A028305.

A061018 Triangle: a(n,m) = number of permutations of (1,2,...,n) with one or more fixed points in the m first positions.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 10, 13, 15, 24, 42, 56, 67, 76, 120, 216, 294, 358, 411, 455, 720, 1320, 1824, 2250, 2612, 2921, 3186, 5040, 9360, 13080, 16296, 19086, 21514, 23633, 25487, 40320, 75600, 106560, 133800, 157824, 179058, 197864, 214551, 229384
Offset: 1

Views

Author

Wouter Meeussen, May 23 2001

Keywords

Comments

Row sums of n are the number of derangements (permutations without fixed point) of n+1, i.e. A000166(n+1).

Examples

			For n=3, the permutations are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1); and (x, 2, 3), (x, 3, 2) have a fixed point x in position 1, (x, x, 3), (x, 3, 2), (3, x, 1) have a fixed point x in positions 1 or 2 and (x, x, x), (2, 1, x), (x, 3, 2), (3, x, 1) have a fixed point x in positions 1, 2 or 3, hence {2, 3, 4}
{1},
{1, 1},
{2, 3, 4},
{6, 10, 13, 15},
{24, 42, 56, 67, 76},
{120, 216, 294, 358, 411, 455},
{720, 1320, 1824, 2250, 2612, 2921, 3186}, ...
		

Crossrefs

Programs

  • Maple
    A061018 := proc(n,m): (n-1)! + add(A061312(n-2,k), k=0..m-2) end: A061312:= proc(n,m): if m=-1 then 0 elif m=0 then n*n! else procname(n,m-1) - procname(n-1,m-1) fi: end: seq(seq(A061018(n,m), m=1..n), n=1..8); # Johannes W. Meijer, Jul 27 2011
    T := (n, k) -> `if`(n=k,n!-GAMMA(n+1,-1)/exp(1),n!*(1-hypergeom([-k],[-n],-1))):
    for n from 1 to 9 do seq(simplify(T(n,k)), k=1..n) od; # Peter Luschny, Oct 03 2017
  • Mathematica
    Table[Count[Permutations[Range[n]], p_/;( Times@@Take[(p-Range[n]), k]===0)], {n, 7}, {k, n}]

Formula

a(n,m) = (n-1)! + Sum_{k=0..m-2} T(n-2, k) where T(n,-1) = 0, T(0,0) = 0, T(n,0) = A001563(n) = n*n!, T(n,m) = T(n,m-1) - T(n-1,m-1) (see A061312).
T(n, k) = n!*(1 - hypergeom([-k], [-n], -1)) for 1 <= k < n and T(n, n) = n! -Gamma(n+1, -1)/exp(1). - Peter Luschny, Oct 03 2017

Extensions

Edited and information added by Johannes W. Meijer, Jul 27 2011

A178517 Triangle read by rows: T(n,k) is the number of non-derangement permutations of {1,2,...,n} having genus k (see first comment for definition of genus).

Original entry on oeis.org

1, 1, 0, 4, 0, 0, 11, 4, 0, 0, 36, 40, 0, 0, 0, 117, 290, 48, 0, 0, 0, 393, 1785, 1008, 0, 0, 0, 0, 1339, 9996, 12712, 1440, 0, 0, 0, 0, 4630, 52584, 123858, 48312, 0, 0, 0, 0, 0, 16193, 264720, 1027446, 904840, 80640, 0, 0, 0, 0, 0, 57201, 1290135, 7627158, 12449800, 3807936, 0
Offset: 1

Views

Author

Emeric Deutsch, May 30 2010

Keywords

Comments

The genus g(p) of a permutation p of {1,2,...,n} is defined by g(p)=(1/2)[n+1-z(p)-z(cp')], where p' is the inverse permutation of p, c = 234...n1 = (1,2,...,n), and z(q) is the number of cycles of the permutation q.
The sum of the entries in row n is A002467(n).
The number of entries in row n is floor(n/2).
T(n,0) = A106640(n-1) .

Examples

			T(3,0)=4 because all non-derangements of {1,2,3}, namely 123=(1)(2)(3), 132=(1)(23), 213=(12)(3), and 321=(13)(2) have genus 0. This follows easily from the fact that a permutation p of {1,2,...,n} has genus 0 if and only if the cycle decomposition of p gives a noncrossing partition of {1,2,...,n} and each cycle of p is increasing (see Lemma 2.1 of the Dulucq-Simion reference).
Triangle starts:
[ 1]  1,
[ 2]  1, 0,
[ 3]  4, 0, 0,
[ 4]  11, 4, 0, 0,
[ 5]  36, 40, 0, 0, 0,
[ 6]  117, 290, 48, 0, 0, 0,
[ 7]  393, 1785, 1008, 0, 0, 0, 0,
[ 8]  1339, 9996, 12712, 1440, 0, 0, 0, 0,
[ 9]  4630, 52584, 123858, 48312, 0, 0, 0, 0, 0,
[10]  16193, 264720, 1027446, 904840, 80640, 0, 0, 0, 0, 0,
[11]  57201, 1290135, 7627158, 12449800, 3807936, 0, 0, 0, 0, 0, 0,
[12]  203799, 6133930, 52188774, 140356480, 96646176, 7257600, 0, ...,
[13]  731602, 28603718, 335517468, 1373691176, 1749377344, 448306560, 0, ...,
...
		

References

  • S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8 (1998), 169-191.

Crossrefs

Cf. A177267 (genus of all permutations).
Cf. A178514 (genus of derangements), A178515 (genus of involutions), A178516 (genus of up-down permutations), A178518 (permutations of [n] having genus 0 and p(1)=k), A185209 (genus of connected permutations).

Programs

  • Maple
    n := 7: with(combinat): P := permute(n): inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: nrcyc := proc (p) local pc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: NDER := {}: for i to factorial(n) do if nrfp(P[i]) > 0 then NDER := `union`(NDER, {P[i]}) else end if end do: f[n] := sort(add(t^gen(NDER[j]), j = 1 .. nops(NDER))): seq(coeff(f[n], t, j), j = 0 .. floor((1/2)*n)-1); # yields the entries in the specified row n

Extensions

Terms beyond row 7 from Joerg Arndt, Nov 01 2012.

A201452 Number of permutations of [n] with both a fixed point and a succession.

Original entry on oeis.org

0, 0, 1, 1, 8, 37, 248, 1749, 14284, 130343, 1318194, 14630853, 176881314, 2313878809, 32567413038, 490762544907, 7883735348152, 134496767915753, 2428518101193448, 46270707955530689, 927734890186657436
Offset: 0

Views

Author

Jon Perry, Jan 09 2013

Keywords

Comments

A succession of a permutation p is the appearance of [k,k+1], e.g. in 23541, 23 is a succession.

Examples

			a(4) = 8 because we have 1234, 1243, 1342, 1423, 2134, 2314, 3124 and 4231.
		

Crossrefs

Programs

  • PARI
    A201452(n)=my(p,c);sum(k=1,n!,p=numtoperm(n,k);c=(p[1]==1);for(j=2,n,p[j]==j&c!=1&c++==3&break;p[j]-1==p[j-1]&c!=2&(c+=2)==3&break);c==3) \\ - M. F. Hasler, Jan 13 2013

Extensions

Values a(1..10) double-checked by M. F. Hasler, Jan 13 2013
a(11)-a(13) from Alois P. Heinz, Jan 18 2013
a(14)-a(20) from Alois P. Heinz, Jul 06 2021

A296050 Number of permutations p of [n] such that min_{j=1..n} |p(j)-j| = 1.

Original entry on oeis.org

0, 0, 1, 2, 8, 40, 236, 1648, 13125, 117794, 1175224, 12903874, 154615096, 2007498192, 28075470833, 420753819282, 6726830163592, 114278495205524, 2055782983578788, 39039148388975552, 780412763620655061, 16381683795665956242, 360258256118419518680, 8283042472303599966974
Offset: 0

Views

Author

Alois P. Heinz, Jan 21 2019

Keywords

Examples

			a(2) = 1: 21.
a(3) = 2: 231, 312.
a(4) = 8: 2143, 2341, 2413, 3142, 3421, 4123, 4312, 4321.
a(5) = 40: 21453, 21534, 23154, 23451, 23514, 24153, 24513, 24531, 25134, 25413, 25431, 31254, 31452, 31524, 34152, 34251, 35124, 35214, 35412, 35421, 41253, 41523, 41532, 43152, 43251, 43512, 43521, 45132, 45213, 45231, 51234, 51423, 51432, 53124, 53214, 53412, 53421, 54132, 54213, 54231.
		

Crossrefs

Programs

  • Maple
    b:= proc(s, k) option remember; (n-> `if`(n=0, `if`(k=1, 1, 0), add(
          `if`(n=j, 0, b(s minus {j}, min(k, abs(n-j)))), j=s)))(nops(s))
        end:
    a:= n-> b({$1..n}, n):
    seq(a(n), n=0..14);
    # second Maple program:
    a:= n-> (f-> f(1)-f(2))(k-> `if`(n=0, 1, LinearAlgebra[Permanent](
            Matrix(n, (i, j)-> `if`(abs(i-j)>=k, 1, 0))))):
    seq(a(n), n=0..14);
    # third Maple program:
    g:= proc(n) g(n):= `if`(n<2, 1-n, (n-1)*(g(n-1)+g(n-2))) end:
    h:= proc(n) h(n):= `if`(n<7, [1, 0$3, 1, 4, 29][n+1], n*h(n-1)+4*h(n-2)
          -3*(n-3)*h(n-3)+(n-4)*h(n-4)+2*(n-5)*h(n-5)-(n-7)*h(n-6)-h(n-7))
        end:
    a:= n-> g(n)-h(n):
    seq(a(n), n=0..25);
  • Mathematica
    g[n_] := g[n] = If[n < 2, 1-n, (n-1)(g[n-1] + g[n-2])];
    h[n_] := h[n] = If[n < 7, {1, 0, 0, 0, 1, 4, 29}[[n+1]],
         n h[n-1] + 4h[n-2] - 3(n-3)h[n-3] + (n-4)h[n-4] +
         2(n-5)h[n-5] - (n-7)h[n-6] - h[n-7]];
    a[n_] := g[n] - h[n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 30 2021, after third Maple program *)

Formula

a(n) = A000142(n) - A001883(n) - A002467(n).
a(n) = A000166(n) - A001883(n).
a(n) = Sum_{k=1..n} A323671(n,k).
a(n) is odd <=> n in { A016933 }.
a(n) is even <=> n in { A047252 }.
Previous Showing 41-50 of 73 results. Next