cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A326618 a(n) = n^18 + n^9 + 1.

Original entry on oeis.org

1, 3, 262657, 387440173, 68719738881, 3814699218751, 101559966746113, 1628413638264057, 18014398643699713, 150094635684419611, 1000000001000000001, 5559917315850179173, 26623333286045024257, 112455406962561892503, 426878854231297789441, 1477891880073843750001
Offset: 0

Views

Author

Richard N. Smith, Jul 15 2019

Keywords

Comments

a(n) = Phi_27(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=2), A002061 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), A269442 (k=17), A060891 (k=18), A269446 (k=19), A060892 (k=20), A269483 (k=21), A269486 (k=22), A060893 (k=24), A269527 (k=25), A266229 (k=26), this sequence (k=27), A270204 (k=28), A060894 (k=30), A060895 (k=32), A060896 (k=36).
Cf. A153440 (indices of prime terms).

Programs

  • Magma
    [n^18+n^9+1: n in [0..17]]; // Vincenzo Librandi, Jul 15 2019
    
  • Mathematica
    Table[n^18 + n^9 + 1, {n, 0, 17}] (* Vincenzo Librandi, Jul 15 2019 *)
    Table[Cyclotomic[27, n], {n, 0, 17}]
  • PARI
    a(n) = polcyclo(27, n); \\ Michel Marcus, Jul 20 2019

A055378 Table read by antidiagonals: T(n,k) = n^trinv(k)+n^(k-((trinv(k)*(trinv(k)-1))/2)) where trinv (k) = floor((1+sqrt(1+8*k))/2) and with 0^0 = 1.

Original entry on oeis.org

2, 1, 2, 0, 2, 2, 1, 2, 3, 2, 0, 2, 4, 4, 2, 0, 2, 5, 6, 5, 2, 1, 2, 6, 10, 8, 6, 2, 0, 2, 8, 12, 17, 10, 7, 2, 0, 2, 9, 18, 20, 26, 12, 8, 2, 0, 2, 10, 28, 32, 30, 37, 14, 9, 2, 1, 2, 12, 30, 65, 50, 42, 50, 16, 10, 2, 0, 2, 16, 36, 68, 126, 72, 56, 65, 18, 11, 2, 0, 2, 17, 54, 80, 130
Offset: 0

Views

Author

Henry Bottomley, Jun 22 2000

Keywords

Examples

			a(50) = T(5,4) = 5^2+5^1 = 30
		

Crossrefs

Rows include A010054 (apart from initial term), A007395 and A048645 (offset). Subsequent rows are sums of two powers of a given number and also rewritings of A052216 from a particular base to base 10. Columns include A007395, A000027, A005843, A002522, A002378, A001105, A001093, A034262, A011379, A033431, A002523.

Formula

T(n, k) = n^A025581(k)+n^A002262(k)

A193759 Array, by antidiagonals, A(k,n) is the number of prime factors of n^(2^k) + 1, counted with multiplicity.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 1, 3, 1, 2, 0, 1, 2, 2, 1, 2, 1, 0, 1, 2, 2, 2, 3, 1, 3, 0, 1, 2, 2, 2, 3, 2, 2, 2, 0, 1, 2, 6, 2, 4, 3, 3, 2, 2, 0, 1, 3, 5, 2, 4, 3, 3, 3, 3, 1, 3, 0, 1, 4, 7, 3, 4, 3, 4, 3, 2, 2, 2, 1, 0, 1, 5
Offset: 0

Views

Author

Jonathan Vos Post, Aug 11 2011

Keywords

Comments

The main diagonal A(n,n) = number of prime factors of n^(2^n) + 1, counted with multiplicity, begins 0, 1, 1, 3, 2, 4, 3, 6, 6.

Examples

			A(4,5) = 3 because 1+5^16 = 152587890626 = 2 * 2593 * 29423041, which has 3 prime factors. The array begins:
================================================================
....|n=0|n=1|n=2|n=3|n=4|n=5|n=6|n=7|n=8|n=9|.10|.11|comment
====|===|===|===|===|===|===|===|===|===|===|===|===|===========
k=0.|.0.|.1.|.1.|.2.|.1.|.2.|.1.|.3.|.2.|.2.|.1.|.3.|A001222
k=1.|.0.|.1.|.1.|.2.|.1.|.2.|.1.|.3.|.2.|.2.|.1.|.2.|A193330
k=2.|.0.|.1.|.1.|.2.|.1.|.2.|.1.|.2.|.2.|.3.|.2.|.2.|A193929
k=3.|.0.|.1.|.1.|.3.|.1.|.3.|.2.|.3.|.3.|.2.|.2.|.3.|A194003
k=4.|.0.|.1.|.1.|.2.|.2.|.3.|.3.|.3.|.3.|.2.|.5.|.3.|not in OEIS
k=5.|.0.|.1.|.2.|.2.|.2.|.4.|.3.|.4.|.3.|.2.|.4.|.4.|not in OEIS
================================================================
		

Crossrefs

Extensions

Edited by Alois P. Heinz, Aug 11 2011
More terms from Max Alekseyev, Sep 09 2011
Previous Showing 31-33 of 33 results.