cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 78 results. Next

A080013 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=2, r=2, I={0,1}.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 3, 3, 4, 6, 9, 12, 16, 24, 33, 46, 64, 91, 127, 177, 249, 349, 489, 684, 960, 1345, 1884, 2640, 3700, 5185, 7264, 10180, 14265, 19989, 28009, 39249, 54999, 77067, 107992, 151326, 212049, 297136, 416368, 583444, 817561, 1145622, 1605324, 2249491, 3152139, 4416993
Offset: 0

Views

Author

Vladimir Baltic, Jan 24 2003

Keywords

Comments

Also the number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=2, r=2, I={0,-1}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,1,1,0,-1},{1,0,0,1,1,1},60] (* Harvey P. Dale, Aug 08 2019 *)

Formula

Recurrence: a(n) = a(n-2)+a(n-3)+a(n-4)-a(n-6).
G.f.: -(x^2-1)/(x^6-x^4-x^3-x^2+1)

A224811 Number of subsets of {1,2,...,n-8} without differences equal to 2, 4, 6 or 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 48, 64, 88, 121, 165, 225, 300, 400, 520, 676, 884, 1156, 1530, 2025, 2700, 3600, 4800, 6400, 8480, 11236, 14840, 19600, 25900, 34225, 45325, 60025, 79625, 105625, 140075, 185761, 246101, 326041, 431676, 571536, 756756, 1002001, 1327326, 1758276, 2329782, 3087049, 4090296, 5419584
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=8, I={-2,0,8}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^10 - x^5 - x^7 + x^15)/((1 - x)*(1 + x)*(x^2 - x + 1)*(x^3 + x^2 - 1)*(x^6 - x^2 - 1)*(x^12 + x^10 + x^8 + 2*x^6 + x^4 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x^10-x^5-x^7+x^15)/((1-x)*(1+x)*(x^2-x+1)*( x^3+x^2-1)*(x^6-x^2-1)*(x^12+x^10+x^8+2*x^6+x^4+1) )) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-5) -a(n-6) +a(n-7) -a(n-8) +a(n-9) +2*a(n-10) -a(n-11) +a(n-12) -2*a(n-15) +a(n-16) -2*a(n-17) -a(n-20) +a(n-25).
G.f.: (1-x^10-x^5-x^7+x^15) / ( (1-x) *(1+x) *(x^2-x+1) *(x^3+x^2-1) *(x^6-x^2-1) *(x^12+x^10+x^8+2*x^6+x^4+1) ).
a(2*k) = (A003520(k))^2,
a(2*k+1) = A003520(k) * A003520(k+1)

A224815 Number of subsets of {1,2,...,n-8} without differences equal to 4 or 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 24, 36, 54, 81, 108, 144, 192, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 9477, 13689, 19773, 28561, 41743, 61009, 89167, 130321, 192052, 283024, 417088, 614656, 900032, 1317904, 1929788, 2825761
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=4, r=8, I={-4,0,8}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^3 + x^4 - x^5 - x^6 - 3*x^7 + 3*x^8 - 2*x^9 - x^10 - 5*x^11 - 3*x^12 - 2*x^13 + 3*x^15 - 3*x^16 - 3*x^18 + 3*x^19 - 3*x^20 + 3*x^21 + 3*x^23 + 6*x^24 - 3*x^25 - 2*x^26 - 4*x^27 - x^29 - x^30 - 2*x^31 - x^32 + x^33 + x^35 - x^36 + x^37 + x^39)/((1 - x - x^3)*(1 + x^4 + x^6)*(1 + x^4 - x^6)*(1 - x^4 - x^12)*(1 + x^4 + 6*x^8 - 3*x^12 + 2*x^20 + x^24)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)

Formula

a(n) = a(n-1)+a(n-3)-2*a(n-4)+2*a(n-5)+2*a(n-7)-6*a(n-8)+6*a(n-9)+6*a(n-11) +a(n-12)-a(n-13)-a(n-15)+13*a(n-16)-13*a(n-17)-13*a(n-19)+15*a(n-20)-15*a(n-21)-15*a(n-23)-6*a(n-24)+6*a(n-25)+6*a(n-27)+3*a(n-28)-3*a(n-29)-3*a(n-31)-2*a(n-32)+2*a(n-33)+2*a(n-35)+8*a(n-36)-8*a(n-37)-8*a(n-39)+3*a(n-40)-3*a(n-41)-3*a(n-43)-a(n-44)+a(n-45)+a(n-47)-a(n-48)+a(n-49)+a(n-51).
G.f.: ( 1-x^3+x^4-x^5-x^6-3*x^7+3*x^8-2*x^9-x^10-5*x^11-3*x^12-2*x^13 +3*x^15-3*x^16-3*x^18+3*x^19-3*x^20+3*x^21+3*x^23+6*x^24-3*x^25-2*x^26-4*x^27-x^29-x^30-2*x^31-x^32+x^33+x^35-x^36+x^37+x^39 ) / ((1-x-x^3)*(1+x^4+x^6)*(1+x^4-x^6)*(1-x^4-x^12)*(1+x^4+6*x^8-3*x^12+2*x^20+x^24)).
a(4*k) = (A000930(k))^4,
a(4*k+1) = (A000930(k))^3 * A000930(k+1),
a(4*k+2) = (A000930(k))^2 * (A000930(k+1))^2,
a(4*k+3) = A000930(k) * (A000930(k+1))^3.

A079957 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={0,1,3}.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 2, 0, 2, 3, 1, 5, 5, 3, 10, 9, 9, 20, 17, 22, 39, 35, 51, 76, 74, 112, 150, 160, 239, 300, 346, 501, 610, 745, 1040, 1256, 1592, 2151, 2611, 3377, 4447, 5459, 7120, 9209, 11447, 14944, 19115, 24026, 31273, 39771, 50417, 65332, 82912, 105716
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {3,5,6}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Formula

a(n) = a(n-3)+a(n-5)+a(n-6).
G.f.: -1/(x^6+x^5+x^3-1).

A079972 Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=4, I={1,2}.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 6, 8, 11, 17, 27, 41, 60, 88, 132, 200, 301, 449, 669, 1001, 1502, 2252, 3370, 5040, 7543, 11297, 16919, 25329, 37912, 56752, 84968, 127216, 190457, 285121, 426841, 639025, 956698, 1432276, 2144238, 3210104, 4805827, 7194801
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {1,4,5}.
a(n+3) is the number of length-n binary words with no substring 1x1 of 1xy1 (that is, no 1's occur with distance two or three), see fxtbook link. - Joerg Arndt, May 27 2011

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x - x^4 - x^5), {x, 0, 41}], x] (* Michael De Vlieger, Feb 03 2020 *)
  • Maxima
    a(n):=sum(sum(binomial(k,j)*binomial(j,n-k-3*j),j,floor((n-k)/4),floor((n-k)/3)),k,0,n); /* Vladimir Kruchinin, May 26 2011 */

Formula

a(n) = a(n-1) + a(n-4) + a(n-5).
G.f.: 1/(1-x-x^4-x^5).
a(n) = Sum_{k=0..n} Sum_{j=floor((n-k)/4)..floor((n-k)/3)} binomial(k,j)*binomial(j,n-k-3*j). - Vladimir Kruchinin, May 26 2011

A079973 Number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i=1..n, with k=1, r=4, I={0,3}.

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 2, 5, 6, 8, 14, 16, 27, 36, 51, 77, 103, 155, 216, 309, 448, 628, 912, 1292, 1849, 2652, 3769, 5413, 7713, 11031, 15778, 22513, 32222, 46004, 65766, 94004, 134283, 191992, 274291, 392041, 560287, 800615, 1144320, 1635193, 2336976
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {2,3,5}.
For n>=2, a(n) is number of compositions of n-2 with elements from the set {1,2,3} such that no two odd numbers appear consecutively. - Armend Shabani, Mar 01 2017

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/(x^5 + x^3 + x^2 - 1), {x, 0, 44}], x] (* Michael De Vlieger, Mar 02 2017 *)

Formula

a(n) = a(n-2) + a(n-3) + a(n-5).
G.f.: -1/(x^5 + x^3 + x^2 - 1).

A188379 a(n) = A002526(n+1) - A002527(n+1).

Original entry on oeis.org

0, 0, 0, 6, 18, 46, 115, 374, 1204, 3752, 11300, 34324, 105124, 322989, 989692, 3028484, 9267328, 28374898, 86891022, 266058106, 814585879, 2494006074, 7636057864, 23380074400, 71584762200, 219176102664, 671066472872, 2054652945289
Offset: 0

Views

Author

N. J. A. Sloane, Apr 01 2011

Keywords

Comments

For n >= 3, a(n) is the number of permutations p on the set [n] with the properties that abs(p(i)-i) <= 3 for all i and p(j) <= 2+j for j = 1,2,3.
For n >= 3, a(n) is also the permanent of the n X n matrix that has ones on its diagonal, ones on its three superdiagonals, ones on its three subdiagonals (with the exception of zeros in the (4,1),(5,2), and (6,3)-entries), and is zero elsewhere.
This is row 4 of Kløve's Table 3.

Programs

  • Maple
    with (LinearAlgebra):
    A188379:= n-> `if` (n<=2, 0, Permanent (Matrix (n, (i, j)->
                  `if` (abs(j-i)<4 and [i, j]<>[4, 1] and [i, j]<>[5, 2] and [i, j]<>[6, 3], 1, 0)))):
    seq (A188379(n), n=0..20);
  • Mathematica
    a[n_] := Permanent[Table[If[Abs[j - i] < 4 && {i, j} != {4, 1} && {i, j} != {5, 2} && {i, j} != {6, 3}, 1, 0], {i, 1, n}, {j, 1, n}]]; a[1] = 0; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* Jean-François Alcover, Jan 07 2016, adapted from Maple *)
    CoefficientList[Series[-(x^10 + 2 x^9 + 2 x^7 + 4 x^6 - 2 x^5 - 8 x^4 - 13 x^3 - 2 x^2 + 6 x+6) x^3 / (x^14 + 2 x^13 + 2 x^11 + 4 x^10 - 2 x^9 - 10 x^8 - 16 x^7 - 2 x^6 + 8 x^5 + 10 x^4 + 2 x^2 + 2 x - 1), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 07 2016 *)

Formula

a(n) = A002529(n-1) + A188492(n-1) + A188493(n-1). - Nathaniel Johnston, Apr 08 2011
G.f.: -(x^10 +2*x^9 +2*x^7 +4*x^6 -2*x^5 -8*x^4 -13*x^3 -2*x^2 +6*x+6) * x^3 / (x^14 +2*x^13 +2*x^11 +4*x^10 -2*x^9 -10*x^8 -16*x^7 -2*x^6 +8*x^5 +10*x^4 +2*x^2 +2*x-1). - Alois P. Heinz, Apr 07 2011

Extensions

Name and comments edited by Nathaniel Johnston, Apr 08 2011

A224810 Subsets of {1,2,...,n-6} without differences equal to 3 or 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 96, 144, 216, 324, 486, 729, 1053, 1521, 2197, 3211, 4693, 6859, 10108, 14896, 21952, 32144, 47068, 68921, 100860, 147600, 216000, 316800, 464640, 681472, 998976
Offset: 0

Views

Author

Vladimir Baltic, May 16 2013

Keywords

Comments

Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=3, r=6, I={-2,-1,1,2,3,4,5}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18)), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18))) \\ G. C. Greubel, Apr 30 2017

Formula

a(3*k) = (A000930(k))^3.
a(3*k+1) = (A000930(k))^2 * A000930(k+1).
a(3*k+2) = A000930(k) * (A000930(k+1))^2.
a(n) = a(n-1) -a(n-3) +2*a(n-4) -2*a(n-6) +4*a(n-7) +2*a(n-9) +2*a(n-10) +4*a(n-12) -2*a(n-13) +2*a(n-15) -4*a(n-16) -2*a(n-18) -2*a(n-19) -a(n-21) -a(n-22) -a(n-24)
G.f.: (1+x^3-x^4-x^5+x^6-2*x^7-x^8-x^9-2*x^10-x^12-x^13-x^15) / ((1-x)*(1+x+x^2)*(1-x-x^3)*(1+3*x^3+7*x^6+9*x^9+7*x^12+3*x^15+x^18))

A079958 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={3,4}.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 25, 46, 86, 161, 300, 560, 1046, 1952, 3644, 6803, 12699, 23706, 44254, 82611, 154215, 287883, 537408, 1003212, 1872757, 3495988, 6526172, 12182800, 22742368, 42454552, 79252477, 147945385, 276178586, 515559248
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {1,2,3,6}.
Number of compositions of n with 3 frozen; that is, the order of the summand 3 does not matter. - Gregory L. Simay, Oct 01 2018

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1,1,0,0,1},{1,1,2,4,7,13},40] (* Harvey P. Dale, Jun 21 2024 *)
  • PARI
    x='x+O('x^50); Vec(1/(1-x-x^2-x^3-x^6)) \\ Altug Alkan, Oct 02 2018

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-6).
G.f.: -1/(x^6+x^3+x^2+x-1)

A079971 Number of compositions (ordered partitions) of n into parts 1, 2, and 5.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 15, 26, 44, 75, 128, 218, 372, 634, 1081, 1843, 3142, 5357, 9133, 15571, 26547, 45260, 77164, 131557, 224292, 382396, 651948, 1111508, 1895013, 3230813, 5508222, 9390983, 16010713, 27296709, 46538235, 79343166, 135272384
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of ways of ordered sequences of nickels, dimes and quarters that add to 5n cents.
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=4, I={2,3}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(5, (i,j)-> if i+1=j or j=1 and member(i,[1, 2, 5]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    LinearRecurrence[{1, 1, 0, 0, 1}, {1, 1, 2, 3, 5}, 40] (* Jean-François Alcover, Nov 11 2015 *)
  • Maxima
    a(n):=sum(sum(binomial(j,n-5*k+4*j)*binomial(k,j),j,floor((5*k-n)/4),k),k,0,n); /* Vladimir Kruchinin, Dec 15 2011 */

Formula

Recurrence: a(n) = a(n-1)+a(n-2)+a(n-5).
G.f.: 1/(1-x-x^2-x^5).
a(n) = Sum_{k=0..n} Sum_{j=floor((5*k-n)/4)..k} C(j,n-5*k+4*j)*C(k,j). - Vladimir Kruchinin, Dec 15 2011
With offset 1, the INVERT transform of (1 + x + x^4). - Gary W. Adamson, Apr 01 2017

Extensions

Entry revised by N. J. A. Sloane, Feb 23 2006
Previous Showing 21-30 of 78 results. Next