cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 68 results. Next

A041111 Denominators of continued fraction convergents to sqrt(63).

Original entry on oeis.org

1, 1, 15, 16, 239, 255, 3809, 4064, 60705, 64769, 967471, 1032240, 15418831, 16451071, 245733825, 262184896, 3916322369, 4178507265, 62415424079, 66593931344, 994730462895, 1061324394239, 15853271982241
Offset: 0

Views

Author

Keywords

Comments

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 14 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • Mathematica
    Denominator/@Convergents[Sqrt[63],30] (* Harvey P. Dale, May 18 2011 *)
    CoefficientList[Series[(1 + x - x^2)/(1 - 16 x^2 + x^4), {x, 0, 30}], x]  (* Vincenzo Librandi, Oct 24 2013 *)

Formula

From Colin Barker, Jul 15 2012: (Start)
a(n) = 16*a(n-2) - a(n-4).
G.f.: (1+x-x^2)/(1-16*x^2+x^4). (End)
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(14) + sqrt(18) )/2 and beta = ( sqrt(14) - sqrt(18) )/2 be the roots of the equation x^2 - sqrt(14)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even. a(n) = Product_{k = 1..floor((n-1)/2)} ( 14 + 4*cos^2(k*Pi/n) ). Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 14*a(2*n) + a(2*n - 1). (End)

A041039 Denominators of continued fraction convergents to sqrt(24).

Original entry on oeis.org

1, 1, 9, 10, 89, 99, 881, 980, 8721, 9701, 86329, 96030, 854569, 950599, 8459361, 9409960, 83739041, 93149001, 828931049, 922080050, 8205571449, 9127651499, 81226783441, 90354434940, 804062262961
Offset: 0

Views

Author

Keywords

Comments

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 8 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[24],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011 *)
    Denominator[Convergents[Sqrt[24],30]] (* or *) LinearRecurrence[{0,10,0,-1},{1,1,9,10},30] (* Harvey P. Dale, Apr 12 2022 *)

Formula

G.f.: (1+x-x^2)/(1-10*x^2+x^4). - Colin Barker, Jan 01 2012
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = sqrt(2) + sqrt(3) and beta = sqrt(2) - sqrt(3) be the roots of the equation x^2 - sqrt(8)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 8 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 8*a(2*n) + a(2*n - 1). (End)

A042937 Denominators of continued fraction convergents to sqrt(1000).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 53, 114, 281, 4329, 8939, 22207, 142181, 164388, 306569, 470957, 777526, 1248483, 78183472, 79431955, 157615427, 237047382, 394662809, 631710191, 4184923955, 9001558101, 22188040157, 341822160456, 705832361069, 1753486882594
Offset: 0

Views

Author

Keywords

Examples

			sqrt(1000) = 31.62... = 31 + 1/(1 + 1/(1 + ...)) with convergents 31/1, 32/1, 63/2, 95/3, 158/5, ... - _M. F. Hasler_, Nov 02 2019
		

Crossrefs

Cf. A042936 (numerators), A040968 (continued fraction), A010467 (decimals).
Analog for sqrt(m): A000129 (m=2), A002530 (m=3), A001076 (m=5), A041007 (m=6), A041009 (m=7), A041011 (m=8), A005663 (m=10), A041015 (m=11), A041017 (m=12), ..., A042933 (m=998), A042935 (m=999).

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[1000], 30]] (* Vincenzo Librandi, Feb 01 2014 *)
  • PARI
    A42937=contfracpnqn(c=contfrac(sqrt(1000)),#c-1)[2,] \\ Possibly incorrect last term ignored. NB: a(n) = A42937[n+1]. For more terms use e.g. \p999, or compute any a(n) from this as in A042936. - M. F. Hasler, Nov 01 2019

Extensions

More terms from Vincenzo Librandi, Feb 01 2014

A143643 Numerators of the lower principal convergents and the lower intermediate convergents to 3^(1/2).

Original entry on oeis.org

1, 3, 5, 12, 19, 45, 71, 168, 265, 627, 989, 2340, 3691, 8733, 13775, 32592, 51409, 121635, 191861, 453948, 716035, 1694157, 2672279, 6322680, 9973081, 23596563, 37220045, 88063572, 138907099, 328657725, 518408351, 1226567328, 1934726305, 4577611587, 7220496869, 17083879020, 26947261171, 63757904493, 100568547815
Offset: 1

Views

Author

Clark Kimberling, Aug 27 2008

Keywords

Comments

The lower principal and intermediate convergents to 3^(1/2), beginning with 1/1, 3/2, 5/3, 12/7, 19/11, form a strictly increasing sequence; with essentially, numerators being this sequence and denominators being A005246.
sqrt(floor(a(n)^2/3)+1) = A005246(n+1). Also see A082630. - Richard R. Forberg, Nov 14 2013
a(n) = U_n(sqrt(6),1) for n odd and a(n) = 3*U_n(sqrt(6),1) for n even, where U_n(sqrt(R),Q) denotes the Lehmer sequence with parameters R and Q. This sequence is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this sequence is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Sep 03 2019

Examples

			From _Peter Bala_, Sep 03 2019: (Start)
If p(n)/q(n) denotes the n-th convergent to the simple continued fraction alpha = [c(0); c(1), c(2), ...] then a lower semiconvergent is a rational number of the form ( p(2*n) + m*p(2*n+1) )/( q(2*n) + m*q(2*n+1) ) where 0 <= m <= c(2*n+2). The lower semiconvergents include the even-indexed convergents p(2*n)/q(2*n) and give an increasing sequence of approximations to alpha from below.
In this case the simple continued fraction expansion sqrt(3) = [1; 1, 2, 1, 2, ...] produces the sequence of convergents (p(n)/q(n))n>=0 = [1/1, 2/1, 5/3, 7/4, 19/11, 26,15, 71/41, ...].
Thus the increasing sequence of lower semiconvergents begins 1/1, (1 + 2)/(1 + 1) = 3/2, (1 + 2*2)/(1 + 2*1) = 5/3, (5 + 7)/(3 + 4) = 12/7, (5 + 2*7)/(3 + 2*4) = 19/11, ... with numerators 1, 3, 5, 12, 19, .... (End)
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • Clark Kimberling, "Best lower and upper approximates to irrational numbers," Elemente der Mathematik, 52 (1997) 122-126.

Crossrefs

Formula

a(n) = 4*a(n-2)-a(n-4). G.f.: x*(1+3*x+x^2)/(1-4*x^2+x^4). - Colin Barker, Apr 28 2012

A144535 Numerators of continued fraction convergents to sqrt(3)/2.

Original entry on oeis.org

0, 1, 6, 13, 84, 181, 1170, 2521, 16296, 35113, 226974, 489061, 3161340, 6811741, 44031786, 94875313, 613283664, 1321442641, 8541939510, 18405321661, 118973869476, 256353060613, 1657092233154, 3570537526921, 23080317394680, 49731172316281, 321467351292366
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2008

Keywords

Examples

			0, 1, 6/7, 13/15, 84/97, 181/209, 1170/1351, 2521/2911, 16296/18817, 35113/40545, ...
		

Crossrefs

Bisections give A001570, A011945.

Programs

  • Magma
    I:=[0, 1, 6, 13]; [n le 4 select I[n] else 14*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
    
  • Maple
    with(numtheory); Digits:=200: cf:=convert(evalf(sqrt(3)/2,confrac); [seq(nthconver(cf,i), i=0..100)];
  • Mathematica
    CoefficientList[Series[x (1 + 6 x - x^2)/((1 - 4 x + x^2) (1 + 4 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    Numerator[Convergents[Sqrt[3]/2,30]] (* or *) LinearRecurrence[{0,14,0,-1},{0,1,6,13},30] (* Harvey P. Dale, Feb 10 2014 *)
  • PARI
    Vec(x*(1+6*x-x^2)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 27 2016

Formula

From Colin Barker, Apr 14 2012: (Start)
a(n) = 14*a(n-2) - a(n-4).
G.f.: x*(1 + 6*x - x^2)/((1 - 4*x + x^2)*(1 + 4*x + x^2)). (End)
a(n) = ((-(-2-sqrt(3))^n*(-3+sqrt(3)) + (2-sqrt(3))^n*(-3+sqrt(3)) - (3+sqrt(3))*((-2+sqrt(3))^n - (2+sqrt(3))^n)))/(8*sqrt(3)). - Colin Barker, Mar 27 2016
a(2*n) = 6*a(2*n-1) + a(2*n-2). a(2*n+1) = A003154(A101265(n+1)). - John Elias, Dec 10 2021

A144536 Denominators of continued fraction convergents to sqrt(3)/2.

Original entry on oeis.org

1, 1, 7, 15, 97, 209, 1351, 2911, 18817, 40545, 262087, 564719, 3650401, 7865521, 50843527, 109552575, 708158977, 1525870529, 9863382151, 21252634831, 137379191137, 296011017105, 1913445293767, 4122901604639, 26650854921601, 57424611447841, 371198523608647
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2008

Keywords

Examples

			0, 1, 6/7, 13/15, 84/97, 181/209, 1170/1351, 2521/2911, 16296/18817, 35113/40545, ...
		

Crossrefs

Bisections give A011943, A028230.

Programs

  • Maple
    with(numtheory); Digits:=200: cf:=convert(evalf(sqrt(3)/2,confrac); [seq(nthconver(cf,i), i=0..100)];
  • Mathematica
    Denominator[Convergents [Sqrt[3]/2, 30]] (* Vincenzo Librandi, Feb 01 2014 *)
    LinearRecurrence[{0,14,0,-1},{1,1,7,15},30] (* Harvey P. Dale, Sep 15 2017 *)

Formula

G.f.: (1 + x - 7*x^2 + x^3)/(1 - 14*x^2 + x^4). - Colin Barker, Jan 01 2012
a(n) = 14*a(n-2) - a(n-4). - Sergei N. Gladkovskii, Jun 07 2015
a(n) = ((3+sqrt(3))*((-2+sqrt(3))^n + (2+sqrt(3))^n) - (-3+sqrt(3))*((-2-sqrt(3))^n + (2-sqrt(3))^n))/12. - Vaclav Kotesovec, Jun 08 2015
From John Elias, Dec 02 2021: (Start)
a(2*n) = 6*A001353(n)^2 + 1. See illustration in links.
a(2*n+1) = 2*a(2*n) + a(2*n-1). (End)

A265294 Decimal expansion of Sum_{n>=1} (x - c(2n-1)), where c = convergents to (x = sqrt(3)).

Original entry on oeis.org

8, 0, 2, 5, 8, 3, 0, 9, 0, 8, 0, 3, 5, 1, 4, 8, 3, 4, 3, 7, 7, 8, 7, 4, 1, 8, 1, 2, 6, 3, 0, 4, 2, 4, 9, 6, 0, 5, 8, 6, 0, 4, 7, 7, 6, 8, 9, 5, 1, 3, 2, 7, 7, 7, 0, 1, 7, 7, 4, 1, 8, 5, 1, 4, 8, 4, 1, 4, 0, 6, 0, 8, 4, 4, 8, 7, 0, 0, 3, 0, 2, 2, 1, 7, 9, 4
Offset: 0

Views

Author

Clark Kimberling, Dec 07 2015

Keywords

Examples

			sum = 0.8025830908035148343778741812630...
		

Crossrefs

Programs

  • Maple
    x := sqrt(3) - 2:
    evalf(2*sqrt(3)*add( x^(n*(n+1)/2)/(x^n - 1), n = 1..18), 100); # Peter Bala, Aug 24 2022
  • Mathematica
    x = Sqrt[3]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265294 *)
    RealDigits[s2, 10, 120][[1]]  (* A265295 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265296 *)

Formula

From Peter Bala, Aug 24 2022: (Start)
Equals 2*sqrt(3)*Sum_{n >= 1} 1/( 1 + (2+sqrt(3))^(2*n-1) ).
A more rapidly converging series for the constant is 2*sqrt(3)*Sum_{n >= 1} x^(n*(n+1)/2)/(x^n - 1), where x = sqrt(3) - 2. See A001227. (End)

A265295 Decimal expansion of Sum_{n >= 1} (c(2*n) - x), where c(n) = the n-th convergent to x = sqrt(3).

Original entry on oeis.org

2, 8, 7, 2, 8, 0, 0, 8, 0, 0, 8, 3, 4, 8, 8, 3, 9, 3, 5, 1, 1, 4, 5, 1, 5, 3, 9, 8, 7, 6, 6, 8, 3, 3, 1, 6, 8, 2, 3, 9, 0, 9, 4, 2, 0, 8, 6, 4, 5, 6, 7, 1, 8, 7, 9, 3, 8, 7, 1, 6, 8, 2, 6, 8, 1, 3, 8, 8, 3, 8, 6, 4, 1, 0, 7, 1, 6, 8, 0, 0, 6, 4, 0, 8, 2, 6
Offset: 0

Views

Author

Clark Kimberling, Dec 07 2015

Keywords

Examples

			sum = 0.28728008008348839351145153987668331682390...
		

Crossrefs

Programs

  • Maple
    x := 7 - 4*sqrt(3):
    evalf(2*sqrt(3)*add( x^(n^2)*(1 + x^n)/(1 - x^n), n = 1..10), 100); # Peter Bala, Aug 24 2022
  • Mathematica
    x = Sqrt[3]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265294 *)
    RealDigits[s2, 10, 120][[1]]  (* A265295 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265296 *)

Formula

Equals 2*sqrt(3)*Sum_{n >= 1} x^(n^2)*(1 + x^n)/(1 - x^n), where x = 7 - 4*sqrt(3). - Peter Bala, Aug 24 2022

A265296 Decimal expansion of Sum_{n >= 1} (c(2*n) - c(2*n-1)), where c(n) = the n-th convergent to x = sqrt(3).

Original entry on oeis.org

1, 0, 8, 9, 8, 6, 3, 1, 7, 0, 8, 8, 7, 0, 0, 3, 2, 2, 7, 8, 8, 9, 3, 2, 5, 7, 2, 1, 1, 3, 9, 7, 2, 5, 8, 1, 2, 8, 8, 2, 5, 1, 4, 1, 9, 7, 7, 5, 9, 6, 9, 9, 9, 6, 4, 9, 5, 6, 4, 5, 8, 6, 7, 8, 2, 9, 8, 0, 2, 4, 4, 7, 2, 5, 5, 5, 8, 6, 8, 3, 0, 8, 6, 2, 6, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 07 2015

Keywords

Examples

			sum = 1.0898631708870032278893257211397258128825141977596999...
		

Crossrefs

Programs

  • Maple
    x := 2 - sqrt(3):
    evalf(2*sqrt(3)*add(x^(n^2)*(1 + x^(2*n))/(1 - x^(2*n)), n = 1..13), 100); # Peter Bala, Aug 24 2022
  • Mathematica
    x = Sqrt[3]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265294 *)
    RealDigits[s2, 10, 120][[1]]  (* A265295 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265296 *)

Formula

Equals 2*sqrt(3)*Sum_{n >= 1} x^(n^2)*(1 + x^(2*n))/(1 - x^(2*n)), where x = 2 - sqrt(3). - Peter Bala, Aug 24 2022

A321119 a(n) = ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2); n-th row common denominator of A321118.

Original entry on oeis.org

4, 2, 8, 10, 28, 38, 104, 142, 388, 530, 1448, 1978, 5404, 7382, 20168, 27550, 75268, 102818, 280904, 383722, 1048348, 1432070, 3912488, 5344558, 14601604, 19946162, 54493928, 74440090, 203374108, 277814198, 759002504, 1036816702, 2832635908, 3869452610
Offset: 0

Views

Author

Keywords

Examples

			a(0) = ((1 - sqrt(3))^0 + (1 + sqrt(3))^0)/2^floor((0 - 1)/2) = 2*(1 + 1) = 4.
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.

Crossrefs

Cf. A002176 (common denominators of Cotesian numbers).

Programs

  • Mathematica
    LinearRecurrence[{0, 4, 0, -1}, {4, 2, 8, 10}, 50]
  • Maxima
    a(n) := ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2)$
    makelist(ratsimp(a(n)), n, 0, 50);

Formula

a(n) = (((sqrt(2) - sqrt(6))/2)^n + ((sqrt(6) + sqrt(2))/2)^n)*((2 - sqrt(2))*(-1)^n + 2 + sqrt(2))/2.
a(-n) = (-1)^n*a(n).
a(n) = 2*A000034(n+1)*A002531(n).
a(2*n) = 2*A001834(n).
a(2*n+1) = 2*A003500(n).
a(n) = 4*a(n-2) - a(n-4) with a(0) = 4, a(1) = 2, a(2) = 8, a(3) = 10.
a(2*n+3) = a(2*n+1) + a(2*n+2).
a(2*n+2) = a(2*n) + 2*a(2*n+1).
G.f.: 2*(1 - x)*(2 + 3*x - x^2)/(1 - 4*x^2 + x^4).
E.g.f.: (1 + exp(-sqrt(6)*x))*((2 - sqrt(2))*exp(sqrt(2 - sqrt(3))*x) + (2 + sqrt(2))*exp(sqrt(2 + sqrt(3))*x))/2.
Lim_{n->infinity} a(2*n+1)/a(2*n) = (1 + sqrt(3))/2.
Previous Showing 21-30 of 68 results. Next