cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A049284 Restricted partitions.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 7, 13, 24, 43, 78, 140, 251, 452, 812, 1457, 2617, 4697, 8428, 15126, 27142, 48700, 87384, 156787, 281307, 504723, 905562, 1624731, 2915039, 5230040, 9383505, 16835453, 30205347, 54192931, 97230224, 174445475, 312981054, 561534340, 1007475560
Offset: 1

Views

Author

N. J. A. Sloane, Michael Somos

Keywords

Comments

Number of compositions n=p(1)+p(2)+...+p(m) with p(1)=4 and p(k) <= 2*p(k+1), see example. [Joerg Arndt, Dec 18 2012]

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(9)=13 compositions 9=p(1)+p(2)+...+p(m) with p(1)=4 and p(k) <= 2*p(k+1):
[ 1]  [ 3 1 1 1 1 1 ]
[ 2]  [ 3 1 1 1 2 ]
[ 3]  [ 3 1 1 2 1 ]
[ 4]  [ 3 1 2 1 1 ]
[ 5]  [ 3 1 2 2 ]
[ 6]  [ 3 2 1 1 1 ]
[ 7]  [ 3 2 1 2 ]
[ 8]  [ 3 2 2 1 ]
[ 9]  [ 3 2 3 ]
[10]  [ 3 3 1 1 ]
[11]  [ 3 3 2 ]
[12]  [ 3 4 1 ]
[13]  [ 3 5 ]
(End)
		

References

  • Minc, H.; A problem in partitions: Enumeration of elements of a given degree in the free commutative entropic cyclic groupoid. Proc. Edinburgh Math. Soc. (2) 11 1958/1959 223-224.

Crossrefs

Programs

  • Maple
    v := proc(c,d) option remember; local i; if d < 0 or c < 0 then 0 elif d = c then 1 else add(v(i,d-c),i=1..2*c); fi; end; [ seq(v(4,n), n=1..50) ];
  • Mathematica
    v[c_, d_] := v[c, d] = If[d < 0 || c < 0, 0, If[d == c, 1, Sum[v[i, d-c], {i, 1, 2*c}]]]; Table[v[4, n], {n, 1, 40}] (* Jean-François Alcover, Jan 10 2014, translated from Maple *)

A049285 Restricted partitions.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 4, 7, 13, 24, 43, 78, 141, 253, 455, 818, 1468, 2637, 4734, 8495, 15247, 27361, 49094, 88093, 158063, 283599, 508840, 912956, 1638003, 2938861, 5272795, 9460227, 16973125, 30452380, 54636174, 98025512, 175872397, 315541228, 566127763
Offset: 1

Views

Author

N. J. A. Sloane, Michael Somos

Keywords

Comments

Number of compositions n=p(1)+p(2)+...+p(m) with p(1)=5 and p(k) <= 2*p(k+1), see example. [Joerg Arndt, Dec 18 2012]

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(10)=13 compositions 10=p(1)+p(2)+...+p(m) with p(1)=5 and p(k) <= 2*p(k+1):
[ 1]  [ 5 1 1 1 1 1 ]
[ 2]  [ 5 1 1 1 2 ]
[ 3]  [ 5 1 1 2 1 ]
[ 4]  [ 5 1 2 1 1 ]
[ 5]  [ 5 1 2 2 ]
[ 6]  [ 5 2 1 1 1 ]
[ 7]  [ 5 2 1 2 ]
[ 8]  [ 5 2 2 1 ]
[ 9]  [ 5 2 3 ]
[10]  [ 5 3 1 1 ]
[11]  [ 5 3 2 ]
[12]  [ 5 4 1 ]
[13]  [ 5 5 ]
(End)
		

References

  • Minc, H.; A problem in partitions: Enumeration of elements of a given degree in the free commutative entropic cyclic groupoid. Proc. Edinburgh Math. Soc. (2) 11 1958/1959 223-224.

Crossrefs

Programs

  • Maple
    v := proc(c,d) option remember; local i; if d < 0 or c < 0 then 0 elif d = c then 1 else add(v(i,d-c),i=1..2*c); fi; end; [ seq(v(5,n), n=1..50) ];
  • Mathematica
    v[c_, d_] := v[c, d] = If[d < 0 || c < 0, 0, If[d == c, 1, Sum[v[i, d-c], {i, 1, 2*c}]]]; Table[v[5, n], {n, 1, 40}] (* Jean-François Alcover, Jan 10 2014, translated from Maple *)

A194629 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 63, 125, 249, 496, 988, 1968, 3920, 7808, 15552, 30978, 61705, 122910, 244824, 487664, 971376, 1934880, 3854082, 7676935, 15291665, 30459424, 60672040, 120852464, 240725680, 479500802, 955116293, 1902493446, 3789571321, 7548436410
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 6*p(k+1). - Joerg Arndt, Dec 18 2012
Row 5 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, and row 4 being A194628.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k (r - j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[5n-4, 1, 6];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=6 */

Formula

a(n) = A294775(n-1,5). - Alois P. Heinz, Nov 08 2017

Extensions

Terms beyond a(20)=122910 added by Joerg Arndt, Dec 18 2012
Invalid empirical g.f. removed by Alois P. Heinz, Nov 08 2017

A279198 Number of pairs of conjugate inseparable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).

Original entry on oeis.org

0, 0, 0, 2, 7, 52, 297, 1994, 14594, 113794, 991741, 9199390, 94105010, 1015012796, 11914379971, 146974330141, 1954701366709
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2016

Keywords

Examples

			Richard Guy gives examples in his letter.
		

References

  • R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
  • R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
  • R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
  • Nowakowski, Richard Joseph, Generalization of the Langford-Skolem problem, MS Thesis, University of Calgary, 1975.

Crossrefs

All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.

Formula

A279197(n) + 2*A279198(n) = A202705(n).

Extensions

a(7)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017

A194630 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 505, 1008, 2012, 4016, 8016, 16000, 31936, 63744, 127234, 253961, 506910, 1011800, 2019568, 4031088, 8046112, 16060160, 32056322, 63984903, 127714833, 254920736, 508825640, 1015623664, 2027200176, 4046322176, 8076520194
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 7*p(k+1). - Joerg Arndt, Dec 18 2012
Row 6 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, and row 5 being A194629.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[6n-5, 1, 7];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=7 */

Formula

a(n) = A294775(n-1,6). - Alois P. Heinz, Nov 08 2017

Extensions

Terms beyond a(20)=127234 added by Joerg Arndt, Dec 18 2012

A194631 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1017, 2032, 4060, 8112, 16208, 32384, 64704, 129280, 258304, 516098, 1031177, 2060318, 4116568, 8225008, 16433776, 32835104, 65605376, 131081216, 261903618, 523290119, 1045547025, 2089029664, 4173934632, 8339628016
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 8*p(k+1). - Joerg Arndt, Dec 18 2012
Row 7 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, row 5 being A194629, and row 6 being A194630.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[7n-6, 1, 8];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=8 */

Formula

a(n) = A294775(n-1,7). - Alois P. Heinz, Nov 08 2017

Extensions

Terms beyond a(20)=129280 added by Joerg Arndt, Dec 18 2012

A194633 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4089, 8176, 16348, 32688, 65360, 130688, 261312, 522496, 1044736, 2088960, 4176896, 8351746, 16699401, 33390622, 66764888, 133497072, 266928752, 533726752, 1067192064, 2133861376, 4266677504, 8531265024
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 10*p(k+1). [Joerg Arndt, Dec 18 2012]
Row 9 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, row 5 being A194629, row 6 being A194630, row 7 being A194631, and row 8 being A194632.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[9n-8, 1, 10];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=10 */

Formula

a(n) = A294775(n-1,9).

Extensions

Added terms beyond a(20)=130688, Joerg Arndt, Dec 18 2012
Invalid empirical g.f. removed by Alois P. Heinz, Nov 08 2017

A173404 Number of partitions of 1 into up to n powers of 1/2.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 22, 38, 66, 116, 205, 364, 649, 1159, 2073, 3712, 6650, 11919, 21370, 38322, 68732, 123287, 221158, 396744, 711760, 1276928, 2290904, 4110102, 7373977, 13229810, 23735985, 42585540, 76404334, 137080120, 245941268, 441254018, 791673612
Offset: 1

Views

Author

Jonathan Vos Post, Feb 17 2010

Keywords

Comments

Partial sums of number of partitions of 1 into n powers of 1/2. Partial sums of (according to one definition of "binary") the number of binary rooted trees. The subsequence of primes in this partial sum begins: 2, 3, 5, 13, a(43) = 26405436301.

Examples

			a(3) = 3: [(1/2)^0], [(1/2)^1,(1/2)^1], [(1/2)^1,(1/2)^2,(1/2)^2].
		

Crossrefs

Partial sums of A002572.

Formula

a(n) = Sum_{i=0..n} A002572(i).

A176431 Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of binary trees with n leaves and 2k leaves on the bottom level (n>=2, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 5, 3, 1, 9, 5, 1, 1, 16, 9, 2, 1, 28, 16, 4, 2, 50, 28, 7, 4, 89, 50, 12, 7, 1, 159, 89, 22, 12, 2, 1, 285, 159, 39, 22, 3, 2, 510, 285, 70, 39, 22, 3, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Examples

			Triangle begins:
1
1
1 1
2 1
3 2
5 3 1
9 5 1 1
16 9 2 1
28 16 4 2
50 28 7 4
89 50 12 7 1
159 89 22 12 2 1
285 159 39 22 3 2
510 285 70 39 22 3 1
		

References

  • J. Paschke et al., Computing and estimating the number of n-ary Huffman sequences of a specified length, Discrete Math., 311 (2011), 1-7.

Crossrefs

Cf. A176452, A176463. First three columns are A002572 (twice), A002573.

A194632 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2041, 4080, 8156, 16304, 32592, 65152, 130240, 260352, 520448, 1040384, 2079746, 4157449, 8310814, 16613464, 33210608, 66388592, 132711968, 265293568, 530326528, 1060132096, 2119222786, 4236363783, 8468566033
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 9*p(k+1). - Joerg Arndt, Dec 18 2012
Row 8 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, row 5 being A194629, row 6 being A194630, and row 7 being A194631.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[8n-7, 1, 9];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=9 */

Formula

a(n) = A294775(n-1,8). - Alois P. Heinz, Nov 08 2017

Extensions

Terms beyond a(20)=130240 added by Joerg Arndt, Dec 18 2012
Previous Showing 21-30 of 39 results. Next