A260324
Triangle read by rows: T(n,k) = logarithmic polynomial A_k^(n)(x) evaluated at x=1.
Original entry on oeis.org
1, 0, 1, 1, -2, 2, 2, 9, -6, 6, 9, -28, 12, -24, 24, 44, 185, 100, 60, -120, 120, 265, -846, -690, -120, 360, -720, 720, 1854, 7777, 2478, 5250, -840, 2520, -5040, 5040, 14833, -47384, 33656, -40656, 1680, -6720, 20160, -40320, 40320, 133496, 559953, -347832, 181944, 359856, 15120, -60480, 181440, -362880, 362880
Offset: 1
Triangle begins:
1,
0,1,
1,-2,2,
2,9,-6,6,
9,-28,12,-24,24,
44,185,100,60,-120,120,
265,-846,-690,-120,360,-720,720,
...
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. Gives first 10 rows. [Annotated scanned copy]
-
A260324 := proc(n,r)
if r = 0 then
1 ;
elif n > r+1 then
0 ;
else
add( (-1)^(r-j*n+1)/(r-j*n+1)!,j=1..(r+1)/n) ;
%*r! ;
end if;
end proc:
for r from 0 to 20 do
for n from 1 to r+1 do
printf("%a,",A260324(n,r)) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Jul 24 2015
-
T[n_, k_] := If[k == 0, 1, If[n > k + 1, 0, k! Sum[(-x)^(k - j n + 1)/(k - j n + 1)!, {j, 1, (k + 1)/n}]]];
Table[T[n, k] /. x -> 1, {k, 0, 9}, {n, 1, k + 1}] // Flatten (* Jean-François Alcover, Mar 30 2020 *)
A346397
Expansion of e.g.f. -log(1 - x) * exp(-2*x).
Original entry on oeis.org
0, 1, -3, 8, -18, 44, -80, 272, 112, 5280, 38464, 414336, 4573184, 55680000, 731374592, 10335551488, 156303374336, 2518984953856, 43099088904192, 780268881068032, 14902336355991552, 299452809651617792, 6315501510330286080, 139485953831281098752, 3219718099932087844864
Offset: 0
-
nmax = 24; CoefficientList[Series[-Log[1 - x] Exp[-2 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-2)^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 24}]
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(i-3)*v[i]+2*(i-1)*v[i-1]+(-2)^(i-1)); v; \\ Seiichi Manyama, May 27 2022
A346398
Expansion of e.g.f. -log(1 - x) * exp(-3*x).
Original entry on oeis.org
0, 1, -5, 20, -72, 249, -825, 2736, -8568, 29385, -74709, 417636, 698544, 21853233, 244181223, 3608612208, 54277152624, 878859416817, 15072037479099, 273539358115092, 5235734703888648, 105419854939796937, 2227408664800976487, 49278475088626210704, 1139260699549648412856
Offset: 0
-
nmax = 24; CoefficientList[Series[-Log[1 - x] Exp[-3 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-3)^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 24}]
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(i-4)*v[i]+3*(i-1)*v[i-1]+(-3)^(i-1)); v; \\ Seiichi Manyama, May 27 2022
A002748
Sum of logarithmic numbers.
Original entry on oeis.org
1, 2, 3, 26, 13, 1074, -1457, 61802, 7929, 4218722, -6385349, 934344762, -5065189307, 141111736466, 235257551943, 23219206152074, -97011062913167, 11887164842925762, -91890238533000461, 4819930221202545242, -14547510704199530499, 1184314832978574919922
Offset: 0
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
A002748 := proc(n) local f1,f2 ; f1 := add(numtheory[sigma](i)*x^(i-1),i=1..n+1) ; f2 := add((-x)^i/i!,i=0..n+1) ; n!*coeftayl(f1*f2,x=0,n) ; end: seq(A002748(n),n=0..25) ; # R. J. Mathar, Oct 22 2007
-
f1[n_] := Sum[DivisorSigma[1, i]*x^(i-1), {i, 1, n+1}]; f2[n_] := Sum[(-x)^i/i!, {i, 0, n+1}] ; a[n_] := n!*SeriesCoefficient[f1[n]*f2[n], {x, 0, n}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jan 17 2014, after R. J. Mathar *)
A002749
Sum of logarithmic numbers.
Original entry on oeis.org
1, 1, 1, 11, -7, 389, -1031, 19039, -24431, 1023497, -4044079, 225738611, -1711460279, 29974303501, 4656373513, 3798866053319, -34131041040991, 2131052083901969, -23678368533941471, 832900320313739227, -4752766287768240359, 148482851420849206421
Offset: 0
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
A002749 := proc(r)
add(A260324(n,r),n=1..r+1) ;
end proc:
seq(A002749(r),r=0..25) ; # R. J. Mathar, Jul 24 2015
-
m = 22;
F[x_] = Sum[DivisorSigma[0, n] x^n , {n, 1, m}];
CoefficientList[F[x]/(x E^x) + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Mar 30 2020 *)
A291484
Expansion of e.g.f. arctanh(x)*exp(x).
Original entry on oeis.org
0, 1, 2, 5, 12, 49, 190, 1301, 7224, 69441, 495898, 6095429, 53005700, 792143793, 8110146070, 142633278997, 1679413757168, 33964965659649, 451969255722162, 10331348137881349, 153288815339260796, 3907452790559751857, 63949589015139119598, 1798373345567005989781, 32179694275204166066728
Offset: 0
E.g.f.: A(x) = x/1! + 2*x^2/2! + 5*x^3/3! + 12*x^4/4! + 49*x^5/5! + ...
-
a:=series(arctanh(x)*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
-
nmax = 24; Range[0, nmax]! CoefficientList[Series[ArcTanh[x] Exp[x], {x, 0, nmax}], x]
nmax = 24; Range[0, nmax]! CoefficientList[Series[Log[(1 + x)/(1 - x)] Exp[x]/2, {x, 0, nmax}], x]
nmax = 24; Range[0, nmax]! CoefficientList[Series[Sum[x^(2 k + 1)/(2 k + 1), {k, 0, Infinity}] Exp[x], {x, 0, nmax}], x]
Table[Sum[Binomial[n+1,2k+1](n-2k)/(n+1) (2 k)!, {k,0,n/2}],{n,0,12}] (* Emanuele Munarini, Dec 16 2017 *)
-
makelist(sum(binomial(n+1,2*k+1)*(n-2*k)/(n+1)*(2*k)!,k,0,floor(n/2)),n,0,12); /* Emanuele Munarini, Dec 16 2017 */
-
first(n) = x='x+O('x^n); Vec(serlaplace(atanh(x)*exp(x)), -n) \\ Iain Fox, Dec 16 2017
A336292
a(n) = (n!)^2 * Sum_{k=1..n} (-1)^(n-k) / (k * ((n-k)!)^2).
Original entry on oeis.org
0, 1, -2, 3, 8, 305, 10734, 502747, 30344992, 2307890097, 216571514030, 24619605092291, 3337294343698248, 532148381719443073, 98646472269855762238, 21041945289232131607995, 5118447176652195630775424, 1408601897794844346184122017, 435481794298015565250651718302
Offset: 0
-
Table[(n!)^2 Sum[(-1)^(n - k)/(k ((n - k)!)^2), {k, 1, n}], {n, 0, 18}]
nmax = 18; CoefficientList[Series[-Log[1 - x] BesselJ[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2
-
a(n) = (n!)^2 * sum(k=1, n, (-1)^(n-k) / (k * ((n-k)!)^2)); \\ Michel Marcus, Jul 17 2020
A002751
Sum of logarithmic numbers.
Original entry on oeis.org
1, 3, 9, 37, 153, 951, 5473, 42729, 353937, 3455083, 30071001, 426685293, 4707929449, 59350096287, 882391484913, 15177204356401, 205119866263713, 4040196156574419, 64262949875511337, 1408785031894483893, 29514546353782633401, 593055713389216814983
Offset: 0
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[seq(numtheory[tau](n),n=0..40)] ;gfun[listtoseries](%,x,'ogf') ; %/x*exp(x) ; taylor(%,x=0,40) ; eg := gfun[seriestolist](%,'ogf') ; seq( op(i,eg)*(i-1)!, i=1..nops(eg)) ; # R. J. Mathar, Jul 08 2011
A302581
a(n) = n! * [x^n] -exp(-n*x)*log(1 - x).
Original entry on oeis.org
0, 1, -3, 20, -186, 2249, -33360, 586172, -11901008, 274098393, -7060189120, 201092672604, -6275340884736, 212915635727313, -7803567334571008, 307245946117223700, -12933084380738398208, 579587518114690731601, -27550568677612746940416, 1384553892443352890245636
Offset: 0
-
Table[n! SeriesCoefficient[-Exp[-n x] Log[1 - x], {x, 0, n}], {n, 0, 19}]
Table[Sum[(-n)^(n - k) (k - 1)! Binomial[n, k], {k, 1, n}], {n, 0, 19}]
nmax = 20; CoefficientList[Series[-Log[1 - LambertW[x]]/(1 + LambertW[x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 09 2019 *)
A346409
a(n) = (n!)^2 * Sum_{k=0..n-1} (-1)^k / ((n-k)^2 * k!).
Original entry on oeis.org
0, 1, -3, 13, -52, 476, 1344, 156192, 6935424, 470168064, 38948065920, 3979380286080, 489922581219840, 71586095491054080, 12249193741572372480, 2426646293132502067200, 551096248249459158220800, 142236660450422499604070400, 41404182857569072540171468800
Offset: 0
-
Table[(n!)^2 Sum[(-1)^k/((n - k)^2 k!), {k, 0, n - 1}], {n, 0, 18}]
nmax = 18; CoefficientList[Series[PolyLog[2, x] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!^2