cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A000491 Number of bipartite partitions of n white objects and 5 black ones.

Original entry on oeis.org

7, 19, 47, 97, 189, 339, 589, 975, 1576, 2472, 3804, 5727, 8498, 12400, 17874, 25433, 35818, 49908, 68939, 94378, 128234, 172917, 231630, 308240, 407804, 536412, 701910, 913773, 1184022, 1527165, 1961432, 2508762, 3196473, 4057403, 5132066
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^5 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^5}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A054225.
Cf. A005380.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(243*2^n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 27 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[3^5*2^n, 3^5*2^n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(7 + 5*x + 2*x^2 - 2*x^3 - 7*x^4 - 9*x^5 - 6*x^6 + x^7 + 4*x^8 + 6*x^9 + 3*x^10 + x^11 - 3*x^12 - 2*x^13 + x^14)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 5 then A054225(5,n) else A054225(n,5). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ 3*n^(3/2) * exp(Pi*sqrt(2*n/3)) / (20*sqrt(2)*Pi^5). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A201376 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of partitions of (n,k) into a sum of pairs.

Original entry on oeis.org

1, 1, 2, 2, 4, 9, 3, 7, 16, 31, 5, 12, 29, 57, 109, 7, 19, 47, 97, 189, 339, 11, 30, 77, 162, 323, 589, 1043, 15, 45, 118, 257, 522, 975, 1752, 2998, 22, 67, 181, 401, 831, 1576, 2876, 4987, 8406, 30, 97, 267, 608, 1279, 2472, 4571, 8043, 13715, 22652, 42, 139, 392, 907, 1941, 3804, 7128, 12693, 21893, 36535, 59521
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2011

Keywords

Comments

By analogy with ordinary partitions (A000041). The empty partition gives T(0,0)=1 by definition. A201377 and A054225 give partitions of pairs into sums of distinct pairs.
Parts (i,j) are "positive" in the sense that min {i,j} >= 0 and max {i,j} >0. The empty partition of (0,0) is counted as 1.

Examples

			Partitions of (3,1) into positive pairs, T(3,1) = 7:
(3,1),
(3,0) + (0,1),
(2,1) + (1,0),
(2,0) + (1,1),
(2,0) + (1,0) + (0,1),
(1,1) + (1,0) + (1,0),
(1,0) + (1,0) + (1,0) + (0,1).
First ten rows of triangle:
0:                      1
1:                    1  2
2:                  2  4  9
3:                3  7  16  31
4:              5  12  29  57  109
5:            7  19  47  97  189  339
6:          11  30  77  162  323  589  1043
7:        15  45  118  257  522  975  1752  2998
8:      22  67  181  401  831  1576  2876  4987  8406
9:    30  97  267  608  1279  2472  4571  8043  13715  22652
X:  42  139  392  907  1941  3804  7128  12693  21893  36535  59521
		

Crossrefs

T(n,0) = A000041(n);
T(1,k) = A000070(k), k <= 1; T(n,1) = A000070(n), n > 1;
T(2,k) = A000291(k), k <= 2; T(n,2) = A000291(n), n > 2;
T(3,k) = A000412(k), k <= 3; T(n,3) = A000412(n), n > 3;
T(4,k) = A000465(k), k <= 4; T(n,4) = A000465(n), n > 4;
T(5,k) = A000491(k), k <= 5; T(n,5) = A000491(n), n > 5;
T(6,k) = A002755(k), k <= 6; T(n,6) = A002755(n), n > 6;
T(7,k) = A002756(k), k <= 7; T(n,7) = A002756(n), n > 7;
T(8,k) = A002757(k), k <= 8; T(n,8) = A002757(n), n > 8;
T(9,k) = A002758(k), k <= 9; T(n,9) = A002758(n), n > 9;
T(10,k) = A002759(n), k <= 10; T(n,10) = A002759(n), n > 10;
T(n,n) = A002774(n).
See A054225 for another version.

Programs

  • Haskell
    -- see link.
  • Mathematica
    max = 10; se = Series[ Sum[ Log[1 - x^(n-k)*y^k], {n, 1, 2max }, {k, 0, n}], {x, 0, 2max }, {y, 0, 2max }]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max }, {y, 0, 2max }], {x, y}]; t[n_, k_] := coes[[n+1, k+1]]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]] (* Jean-François Alcover, Dec 05 2011 *)
    p = 2; q = 3; b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n] , 1|n]}]]; t[n_, k_] := b[p^n*q^k, p^n*q^k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)

Formula

For references, programs and g.f. see A054225.

Extensions

Entry revised by N. J. A. Sloane, Nov 30 2011

A219561 Number of 4-partite partitions of (n,n,n,n) into distinct quadruples.

Original entry on oeis.org

1, 15, 457, 14595, 407287, 10200931, 233051939, 4909342744, 96272310302, 1771597038279, 30795582025352, 508466832109216, 8011287089600483, 120926718707154007, 1754672912487450236, 24547188914867491083, 331937179344717327559, 4348524173437743243649, 55300773426746984710983
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2012

Keywords

Comments

Number of factorizations of (p*q*r*s)^n into distinct factors where p, q, r, s are distinct primes.

Examples

			a(0) = 1: [].
a(1) = 15: [(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)], [(0,0,1,1),(1,0,0,0),(0,1,0,0)], [(0,1,0,1),(1,0,0,0),(0,0,1,0)], [(0,1,1,0),(1,0,0,0),(0,0,0,1)], [(1,0,0,1),(0,1,0,0),(0,0,1,0)], [(1,0,0,1),(0,1,1,0)], [(1,0,1,0),(0,1,0,0),(0,0,0,1)], [(1,0,1,0),(0,1,0,1)], [(1,1,0,0),(0,0,1,0),(0,0,0,1)], [(1,1,0,0),(0,0,1,1)], [(0,1,1,1),(1,0,0,0)], [(1,0,1,1),(0,1,0,0)], [(1,1,0,1),(0,0,1,0)], [(1,1,1,0),(0,0,0,1)], [(1,1,1,1)].
		

Crossrefs

Column k=4 of A219585.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (1/2) Coefficient[Product[O[w]^(n+1) + O[x]^(n+1) + O[y]^(n+1) + O[z]^(n+1) + (1 + w^i x^j y^k z^m), {i, 0, n}, {j, 0, n}, {k, 0, n}, {m, 0, n}] // Normal, (w x y z)^n]];
    Table[Print[n]; a[n], {n, 0, 12}] (* Jean-François Alcover, Sep 16 2019 *)

Formula

a(n) = [(w*x*y*z)^n] 1/2 * Product_{i,j,k,m>=0} (1+w^i*x^j*y^k*z^m).

Extensions

a(9) from Alois P. Heinz, Oct 15 2014
a(10)-a(18) from Andrew Howroyd, Dec 17 2018

A091437 Number of bipartite partitions of ceiling(n/2) white objects and floor(n/2) black ones.

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 31, 57, 109, 189, 339, 589, 1043, 1752, 2998, 4987, 8406, 13715, 22652, 36535, 59521, 94664, 151958, 239241, 379693, 591271, 927622, 1431608, 2224235, 3402259, 5236586, 7947530, 12130780, 18272221, 27669593, 41393154
Offset: 0

Views

Author

Christian G. Bower, Jan 08 2004

Keywords

Crossrefs

a(n) = A054225(n, [n/2]). Cf. A002774, A005380.

Programs

  • Mathematica
    max = 35; se = Series[ Sum[ Log[1 - x^(n - k)*y^k], {n, 1, 2max}, {k, 0, n}], {x, 0, 2max}, {y, 0, 2max}]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max}, {y, 0, 2max}], {x, y}]; a[n_] := coes[[ Ceiling[(n+2)/2], Floor[(n+2)/2] ]]; Table[a[n], {n, 0, max} ](* Jean-François Alcover, Dec 06 2011 *)

A219565 Number of 5-partite partitions of (n,n,n,n,n) into distinct quintuples.

Original entry on oeis.org

1, 52, 6995, 937776, 107652681, 10781201973, 958919976957, 76861542428397, 5620227129073491, 378709513816248475, 23713852762539359688, 1389561695379881634055, 76647024053735036288641, 3999799865715906390697377, 198328846122797866982616805, 9379277765981012067789260214
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2012

Keywords

Comments

Number of factorizations of (p*q*r*s*t)^n into distinct factors where p, q, r, s, t are distinct primes.

Crossrefs

Column k=5 of A219585.

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, (1/2) Coefficient[Product[O[v]^(n+1) + O[w]^(n+1) + O[x]^(n+1) + O[y]^(n+1) + O[z]^(n+1) + (1 + v^i w^j x^k y^l z^m), {i, 0, n}, {j, 0, n}, {k, 0, n}, {l, 0, n}, {m, 0, n}] // Normal, (v w x y z)^n]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 7}] (* Jean-François Alcover, Sep 24 2019 *)

Formula

a(n) = [(v*w*x*y*z)^n] 1/2 * Product_{h,i,j,k,m>=0} (1+v^h*w^i*x^j*y^k*z^m).

Extensions

a(6) from Alois P. Heinz, Sep 25 2014
a(7)-a(15) from Andrew Howroyd, Dec 16 2018

A254686 Number of ways to put n red and n blue balls into n indistinguishable boxes.

Original entry on oeis.org

1, 1, 5, 19, 74, 248, 814, 2457, 7168, 19928, 53688, 139820, 354987, 878434, 2128102, 5052010, 11781881, 27019758, 61035671, 135928105, 298784144, 648726349, 1392474574, 2956730910, 6214668074, 12937060340, 26686392239, 54572423946, 110680119454, 222710856175, 444776676764
Offset: 0

Views

Author

Brian Chen, Feb 08 2015

Keywords

Comments

See a comment on A254811 about multiset partitions and the Knuth reference. - Wolfdieter Lang, Mar 26 2015

Examples

			For n = 2 the a(2) = 5 ways to put 2 red balls and 2 blue balls into 2 indistinguishable boxes are (RRBB)(), (RRB)(B), (RBB)(R), (RR)(BB), (RB)(RB).
		

Crossrefs

Column k=2 of A256384.
Main diagonal of A277239.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k, i) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n) or i<2, 0, add(
          `if`(d>k, 0, b(n/d, d, i-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(6^n$2,n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 26 2015
  • Mathematica
    b[n_, k_, i_] := b[n, k, i] = If[n > k, 0, 1] + If[PrimeQ[n] || i < 2, 0, Sum[If[d > k, 0, b[n/d, d, i - 1]], {d, Divisors[n] [[2 ;; -2]]}]]; a[n_] := b[6^n, 6^n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

A108462 Number of factorizations of (n,n) into pairs (i,j) with i,j >= 1, not both 1.

Original entry on oeis.org

1, 2, 2, 9, 2, 15, 2, 31, 9, 15, 2, 92, 2, 15, 15, 109, 2, 92, 2, 92, 15, 15, 2, 444, 9, 15, 31, 92, 2, 203, 2, 339, 15, 15, 15, 712, 2, 15, 15, 444, 2, 203, 2, 92, 92, 15, 2, 1903, 9, 92, 15, 92, 2, 444, 15, 444, 15, 15, 2, 1663, 2, 15, 92, 1043, 15, 203, 2, 92, 15, 203, 2
Offset: 1

Views

Author

Christian G. Bower, Jun 03 2005

Keywords

Comments

The rule of building products is (a,b)*(x,y) = (a*x,b*y).
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).

Examples

			From _Alois P. Heinz_ and _Antti Karttunen_, Nov 24 2017: (Start)
a(4) = 9 because for pair (4,4) there are nine factorizations:
  (4,4)
  (1,4)*(4,1)
  (1,2)*(4,2)
  (2,1)*(2,4)
  (2,2)*(2,2)
  (1,2)*(2,1)*(2,2)
  (1,4)*(2,1)*(2,1)
  (4,1)*(1,2)*(1,2)
  (1,2)*(1,2)*(2,1)*(2,1)
(End)
a(pq) = 15 for primes p<>q: (pq,pq); (p,1)(q,pq); (p,1)(q,1)(1,pq); (p,1)(q,1)(1,p)(1,q); (p,1)(q,q)(1,p); (p,1)(q,p)(1,q); (p,q)(q,p); (p,q)(q,1)(1,p); (p,p)(q,q) ; (p,p)(q,1)(1,q); (p,pq)(q,1); (pq,1)(1,pq); (pq,1)(1,p)(1,q); (pq,q)(1,p); (pq,p)(1,q). - _R. J. Mathar_, Nov 30 2017
		

Crossrefs

Main diagonal of A108461.

Programs

  • PARI
    a(n) = if(n==1, return(1)); my(b, c, r, x, y, v=List([]), w=List([[n]])); while(#w>r, c++; for(k=r+1, r=#w, y=w[k]; if(!isprime(x=y[c]), fordiv(x, d, if(d!=1&&d!=x, listput(w, concat([y[1..c-1], d, x/d]))))))); for(i=1, #w, x=w[i]; r=#x; for(j=1, #w, y=w[j]; for(k=0, 2^r-1, b=concat(b=binary(k), vector(r-#b)); if(#y>=t=vecsum(b), c=0; listput(v, vecsort(vector(r+#y-t, m, if(m>r, [1, y[m-r+t]], if(b[m], [x[m], y[c++]], [x[m], 1]))))))))); #Set(v); \\ Jinyuan Wang, Jan 17 2022

Formula

a(A025487(n)) = A108463(n).
a(p^k) = A002774(k).
a(A002110(n)) = A020557(n).
a(n) = A108461(n,n).

A331197 Number of nonnegative integer matrices with 2 distinct columns and any number of nonzero rows with each column sum being n and rows in nonincreasing lexicographic order.

Original entry on oeis.org

0, 1, 7, 28, 104, 332, 1032, 2983, 8384, 22622, 59479, 151902, 379616, 927521, 2224100, 5236410, 12130549, 27669296, 62229605, 138095206, 302672402, 655627183, 1404598865, 2977830134, 6251059210, 12999297747, 26791987616, 54750232180, 110977385294, 223204454700, 445590973235
Offset: 0

Views

Author

Andrew Howroyd, Jan 11 2020

Keywords

Comments

The condition that the rows be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of rows.

Examples

			The a(2) = 7 matrices are:
   [2 1]   [2 0]   [1 2]   [1 1]   [2 0]   [1 0]   [1 0]
   [0 1]   [0 2]   [1 0]   [1 0]   [0 1]   [1 0]   [1 0]
                           [0 1]   [0 1]   [0 2]   [0 1]
                                                   [0 1]
See the example in A331197 for the a(3) = 28 case.
		

Crossrefs

Column k=2 of A331161.

Formula

a(n) = A002774(n) - A000041(n).

A267862 Number of planar lattice convex polygonal lines joining the origin and the point (n,n).

Original entry on oeis.org

1, 2, 5, 13, 32, 77, 178, 399, 877, 1882, 3959, 8179, 16636, 33333, 65894, 128633, 248169, 473585, 894573, 1673704, 3103334, 5705383, 10405080, 18831761, 33836627, 60378964, 107035022, 188553965, 330166814, 574815804, 995229598, 1714004131, 2936857097
Offset: 0

Views

Author

Christoph Koutschan, Apr 07 2016

Keywords

Comments

In other words, we are counting walks on the integer lattice N^2 that start at (0,0) and end at (n,n); they may take arbitrary steps, but the slopes of the steps in the walk must strictly increase. As a result, we obtain a convex polygon when joining the two endpoints of the walk with the point (0,n).

Examples

			The two walks for n = 1 are
(0,0) -> (1,1)
(0,0) -> (1,0) -> (1,1).
The five possibilities for n = 2 are
(0,0) -> (2,2)
(0,0) -> (1,0) -> (2,1) -> (2,2)
(0,0) -> (1,0) -> (2,2)
(0,0) -> (2,0) -> (2,2)
(0,0) -> (2,1) -> (2,2).
		

Crossrefs

Programs

  • Mathematica
    a[i_Integer, j_Integer, s_] := a[i, j, s] = If[i === 0, 1, Sum[a[i - x, j - y, y/x], {x, 1, i}, {y, Floor[s*x] + 1, j}]]; a[n_Integer] := a[n] = 1 + Sum[a[n - x, n - y, y/x], {x, 1, n}, {y, 0, x - 1}]; Flatten[{1, Table[a[n], {n, 30}]}]
    nmax = 20; p = (1 - x)*(1 - y); Do[Do[p = Expand[p*If[GCD[i, j] == 1, (1 - x^i*y^j), 1]]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {i, 1, nmax}], {j, 1, nmax}]; p = Expand[Normal[Series[1/p, {x, 0, nmax}, {y, 0, nmax}]]]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Flatten[{1, Table[Coefficient[p, x^n*y^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Apr 08 2016 *)

Formula

a(n) = [x^n*y^n] 1/((1-x)*(1-y)*Product_{i>0,j>0,gcd(i,j)=1} (1-x^i*y^j)).
An asymptotic formula for a(n) is given by Bureaux and Enriquez: a(n) ~ e^(-2*zeta'(-1))/((2*Pi)^(7/6)*sqrt(3)*kappa^(1/18)*n^(17/18)) * e^(3*kappa^(1/3)*n^(2/3)+...) where kappa := zeta(3)/zeta(2) and zeta denotes the Riemann zeta function.
Previous Showing 11-19 of 19 results.