cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A029990 Numbers k such that k^2 is palindromic in base 6.

Original entry on oeis.org

0, 1, 2, 7, 37, 43, 76, 91, 217, 259, 1064, 1297, 1333, 1519, 1555, 2704, 3367, 7777, 8029, 9079, 19747, 46657, 46873, 47989, 48205, 54439, 54655, 54695, 83979, 118027, 241304, 279937, 281449, 287749, 326599, 707707, 1679617
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007092.
Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), this sequence (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

Programs

  • Mathematica
    palindromicQ[n_, b_:10] := TrueQ[IntegerDigits[n, b] == Reverse[IntegerDigits[n, b]]]; Select[Range[1000], palindromicQ[#^2, 6] &] (* Alonso del Arte, Mar 05 2017 *)
  • PARI
    ispal(n,base)=my(d=digits(n,base)); d==Vecrev(d)
    is(n)==ispal(n^2,6) \\ Charles R Greathouse IV, Mar 09 2017

A029992 Numbers k such that k^2 is palindromic in base 7.

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 11, 20, 32, 40, 50, 57, 64, 80, 160, 200, 344, 400, 500, 550, 557, 730, 1000, 1376, 1432, 1892, 2402, 2451, 2500, 2752, 2801, 3440, 3784, 3902, 5101, 5266, 6880, 8296, 9460, 9608, 9804, 16808, 17200, 19216, 19608, 22693
Offset: 1

Views

Author

Keywords

Examples

			8^2 = 64, which is 121 in base 7, and since that's palindromic, 8 is in the sequence.
9^2 = 81, which is 144 in base 7, but since that's not palindromic, 9 is not in the sequence.
		

Crossrefs

Cf. A002440 (squares written in base 7), A007093.
Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), this sequence (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

Programs

  • Magma
    [k:k in [0..23000]| Seqint(Intseq(k^2,7)) eq Seqint(Reverse(Intseq(k^2,7)))]; // Marius A. Burtea, Jan 22 2020
  • Mathematica
    Select[Range[0, 16806], IntegerDigits[#^2, 7] == Reverse[IntegerDigits[#^2, 7]] &] (* Alonso del Arte, Jan 21 2020 *)
  • Scala
    (0 to 16806).filter(n => Integer.toString(n * n, 7) == Integer.toString(n * n, 7).reverse) // Alonso del Arte, Jan 21 2020
    

A029733 Numbers k such that k^2 is palindromic in base 16.

Original entry on oeis.org

0, 1, 2, 3, 17, 34, 257, 273, 289, 305, 319, 514, 530, 546, 773, 1377, 4097, 4369, 4641, 8194, 8254, 8466, 8734, 9046, 51629, 65537, 65793, 66049, 66305, 69649, 69905, 70161, 70417, 73505, 73761, 74017, 74273, 76879, 92327, 131074
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), this sequence (b=16), A118651 (b=17).

Programs

  • Mathematica
    n2palQ[n_]:=Module[{id=IntegerDigits[n^2,16]},id==Reverse[id]]; Select[ Range[ 0,150000],n2palQ] (* Harvey P. Dale, Mar 31 2018 *)
  • Python
    from itertools import count, islice
    def A029733_gen(): # generator of terms
        return filter(lambda k: (s:=hex(k**2)[2:])[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],count(0))
    A029733_list = list(islice(A029733_gen(),20)) # Chai Wah Wu, Jun 23 2022

A029805 Numbers k such that k^2 is palindromic in base 8.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 11, 27, 65, 73, 79, 81, 83, 195, 219, 237, 366, 513, 543, 585, 697, 1094, 1539, 1755, 1875, 2910, 4097, 4161, 4225, 4477, 4617, 4681, 4727, 4891, 5267, 8698, 8730, 11841, 12291, 12483, 12675, 13065, 13851, 14673, 15021
Offset: 1

Views

Author

Keywords

Comments

The only powers of 2 in this sequence are 1 and 2. - Alonso del Arte, Feb 25 2017

Examples

			3 is in the sequence because 3^2 = 9 = 11 in base 8, which is a palindrome.
4 is not in the sequence because 4^2 = 16 = 20 in base 8, which is not a palindrome.
		

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), this sequence (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

Programs

  • Mathematica
    palQ[n_, b_:10] := Module[{idn = IntegerDigits[n, b]}, idn == Reverse[idn]]; Select[Range[0, 16000], palQ[#^2, 8] &] (* Harvey P. Dale, May 19 2012 *)
  • Python
    from itertools import count, islice
    def A029805_gen(): # generator of terms
        return filter(lambda k: (s:=oct(k**2)[2:])[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],count(0))
    A029805_list = list(islice(A029805_gen(),20)) # Chai Wah Wu, Jun 23 2022

A029994 Numbers k such that k^2 is palindromic in base 9.

Original entry on oeis.org

0, 1, 2, 10, 20, 82, 91, 100, 164, 730, 820, 1460, 6562, 6643, 6724, 7300, 7381, 7462, 13124, 13642, 13660, 14281, 54050, 59050, 59860, 65620, 66430, 118100, 123010, 126286, 161410, 161896, 487750, 531442, 532171
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007095.
Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), this sequence (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

Programs

  • Mathematica
    pb9Q[n_]:=Module[{idn=IntegerDigits[n^2,9]},idn==Reverse[idn]]; Select[ Range[0,600000],pb9Q] (* Harvey P. Dale, Sep 29 2013 *)

A029996 Numbers k such that k^2 is palindromic in base 11.

Original entry on oeis.org

0, 1, 2, 3, 6, 12, 24, 26, 72, 84, 122, 133, 144, 244, 255, 279, 382, 732, 1332, 1464, 1596, 2414, 2664, 2796, 3062, 4476, 7992, 14642, 14763, 14884, 15984, 16105, 16226, 17326, 29284, 29405, 30626, 33675, 34701, 63546, 87246, 87852, 88578
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), this sequence (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

A034822 Numbers k such that there are no palindromic squares of length k.

Original entry on oeis.org

2, 4, 8, 10, 14, 18, 20, 24, 30, 38, 40
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1998

Keywords

Comments

All terms are even since (10^k+1)^2 is a palindrome of length 2*k+1. a(12) >= 46 if it exists (see A263618). - Chai Wah Wu, Jun 14 2024

Crossrefs

Programs

  • Mathematica
    A034822[n_] := Select[Range[Ceiling[Sqrt[10^(n - 1)]], Floor[Sqrt[10^n]]], #^2 == IntegerReverse[#^2] &];
    Select[Range[12], Length[A034822[#]] == 0 &] (* Robert Price, Apr 23 2019 *)
  • Python
    from sympy import integer_nthroot as iroot
    def ispal(n): s = str(n); return s == s[::-1]
    def ok(n):
      for r in range(iroot(10**(n-1), 2)[0] + 1, iroot(10**n, 2)[0]):
        if ispal(r*r): return False
      return True
    print([m for m in range(1, 16) if ok(m)]) # Michael S. Branicky, Feb 04 2021

Extensions

Two more terms from Patrick De Geest, Apr 01 2002

A118651 Numbers k such that k^2 is a palindrome when written in base 17.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 12, 18, 28, 36, 84, 108, 290, 307, 324, 341, 580, 597, 614, 1080, 1614, 1740, 1842, 2616, 3378, 3480, 3720, 4344, 4824, 4914, 5220, 5526, 6408, 9828, 10134, 10440, 14472, 17944, 19336, 24360, 27624, 29484, 31320, 33144, 33960
Offset: 1

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr), May 12 2006

Keywords

Examples

			E.g. 4^2 = 16_10 = G_16, 6^2 = 36_10 = 22_17, etc.
		

Crossrefs

Cf. A029984 for base 3, A029986 for base 4, A029988 for base 5, A029990 for base 6, A029992 for base 7, A029805 for base 8, A029994 for base 9, A002778 for base 10, A029996 for base 11, A029733 for base 16

A002780 Numbers whose cube is a palindrome.

Original entry on oeis.org

0, 1, 2, 7, 11, 101, 111, 1001, 2201, 10001, 10101, 11011, 100001, 101101, 110011, 1000001, 1001001, 1100011, 10000001, 10011001, 10100101, 11000011, 100000001, 100010001, 100101001, 101000101, 110000011, 1000000001, 1000110001
Offset: 1

Views

Author

Keywords

Comments

a(8)=2201 is the only known non-palindromic rootnumber.
There are no further non-palindromic terms (other than 2201) up to 10^11. - Matevz Markovic, Apr 04 2011. There are none up to 10^15, by direct search. - Charles R Greathouse IV, May 16 2011
There are no non-palindromic terms in the range 10^15 to 10^20 with digits from the set {0,1,2}. - Hans Havermann, May 18 2011.
From Vladimir Shevelev, May 23 2011: (Start)
Using the table by Noe-De Geest, I noticed that all numbers {a(n)=A002780(n); 11<=a(n)<=10^17+10^16+11}, except 2201, allow a partition into 3 disjoint classes of terms of the following forms: 10^k+1, 10^(2*k)+10^k+1, and (10^u+1)*(10^v+1).
Does there exist a term a(n)>10^17+10^16+11 which is in none of these classes?
If there is no such term, then we conclude that the sum of digits of a(n) does not exceed 4 (more exactly, it is i+1 where i is the number of class).
One can prove that the sequence contains no term (other than 2201) with sum of digits = 5. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002781 (cubes of these numbers).

Programs

  • PARI
    isok(k) = my(d=digits(k^3)); Vecrev(d) == d; \\ Michel Marcus, Aug 02 2022
    
  • Python
    def ispal(s): return s == s[::-1]
    def ok(n): return ispal(str(n**3))
    print([k for k in range(10**7) if ok(k)]) # Michael S. Branicky, Aug 02 2022

Extensions

More terms from Patrick De Geest

A029737 Numbers whose square is palindromic in base 12.

Original entry on oeis.org

0, 1, 2, 3, 13, 26, 145, 157, 169, 179, 181, 290, 292, 302, 611, 1729, 1745, 1783, 1885, 2041, 3458, 3614, 3796, 20737, 20881, 21025, 21169, 22477, 22621, 22765, 24073, 24217, 24361, 24599, 25523, 25579, 28613, 41474, 41618, 41908, 43214
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), this sequence (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

Programs

  • Mathematica
    pal12Q[n_]:=Module[{idn12=IntegerDigits[n^2,12]},idn12==Reverse[idn12]]
    Select[Range[0,50000],pal12Q]  (* Harvey P. Dale, Feb 06 2011 *)
Previous Showing 11-20 of 73 results. Next