cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 390 results. Next

A331778 Denominators of coefficients in asymptotic expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k, where H_k are the harmonic numbers A001008/A002805 and gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 1, 3, 1, 90, 90, 567, 5670, 340200, 113400, 11226600, 5613300, 91945854000, 18389170800, 137918781000, 13135122000, 562708626480000, 11483849520000, 2020686677689680000, 505171669422420000, 3334133018187972000000, 370459224243108000000, 115027589127485034000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2020

Keywords

Crossrefs

Numerators are in A331777.

Programs

  • Mathematica
    Denominator[CoefficientList[Series[Exp[2*(HarmonicNumber[k] - EulerGamma)]/k^2, {k, Infinity, 25}], 1/k]] (* Vaclav Kotesovec, Feb 10 2020 *)

Extensions

More terms from Vaclav Kotesovec, Feb 10 2020

A363538 Decimal expansion of Sum_{k>=1} (H(k) - log(k) - gamma)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

7, 2, 8, 6, 9, 3, 9, 1, 7, 0, 0, 3, 9, 3, 0, 6, 0, 5, 9, 3, 7, 6, 0, 5, 8, 9, 1, 0, 2, 0, 2, 9, 1, 8, 0, 0, 4, 1, 7, 5, 0, 2, 7, 1, 8, 8, 1, 2, 9, 2, 2, 2, 9, 9, 8, 9, 1, 3, 6, 9, 0, 0, 5, 4, 2, 5, 2, 7, 2, 2, 7, 1, 9, 2, 5, 2, 3, 3, 5, 8, 6, 9, 6, 4, 2, 6, 9, 7, 4, 4, 2, 3, 8, 8, 6, 5, 3, 7, 8, 6, 0, 4, 5, 5, 9
Offset: 0

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Examples

			0.72869391700393060593760589102029180041750271881292...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[1] - EulerGamma^2/2 + Pi^2/12, 10, 120][[1]]

Formula

Equals -gamma_1 - gamma^2/2 + Pi^2/12, where gamma_1 is the 1st Stieltjes constant (A082633).

A363539 Decimal expansion of Sum_{k>=1} (H(k)^2 - (log(k) + gamma)^2)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

1, 9, 6, 8, 9, 6, 9, 0, 8, 3, 9, 1, 0, 5, 2, 8, 5, 4, 6, 4, 6, 4, 8, 9, 1, 4, 5, 3, 7, 9, 6, 6, 8, 0, 5, 4, 2, 3, 1, 1, 3, 7, 7, 9, 4, 2, 8, 6, 8, 1, 9, 8, 1, 3, 4, 4, 5, 5, 1, 4, 3, 1, 5, 3, 4, 0, 2, 2, 5, 2, 1, 9, 8, 2, 6, 8, 9, 2, 3, 3, 4, 1, 1, 8, 6, 4, 4, 9, 1, 8, 3, 7, 4, 5, 7, 6, 7, 4, 4, 0, 9, 8, 7, 8, 3
Offset: 1

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Comments

The formula for this sum was found by Olivier Oloa and proved by Roberto Tauraso in 2014.

Examples

			1.96896908391052854646489145379668054231137794286819...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[2] - 2*EulerGamma*StieltjesGamma[1] - 2*EulerGamma^3/3 + 5*Zeta[3]/3, 10, 120][[1]]

Formula

Equals -gamma_2 - 2*gamma*gamma_1 - (2/3)*gamma^3 + (5/3)*zeta(3), where gamma_1 and gamma_2 are the 1st and 2nd Stieltjes constants (A082633, A086279).

A363540 Decimal expansion of Sum_{k>=1} (H(k)^3 - (log(k) + gamma)^3)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

5, 8, 2, 1, 7, 4, 0, 0, 8, 5, 0, 4, 8, 6, 4, 6, 5, 2, 8, 8, 9, 6, 8, 6, 8, 6, 1, 5, 5, 0, 2, 0, 4, 1, 3, 4, 3, 1, 5, 0, 3, 3, 3, 2, 4, 3, 1, 9, 5, 7, 7, 0, 1, 1, 4, 4, 2, 4, 0, 3, 9, 2, 7, 6, 4, 7, 6, 4, 1, 3, 9, 7, 2, 2, 5, 9, 8, 1, 8, 9, 7, 4, 9, 5, 1, 8, 9, 0, 4, 2, 8, 5, 7, 4, 3, 2, 3, 1, 9, 0, 9, 6, 5, 9, 7
Offset: 1

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Examples

			5.82174008504864652889686861550204134315033324319577...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[3] - 3*EulerGamma*StieltjesGamma[2] - 3*EulerGamma^2*StieltjesGamma[1] - 3*EulerGamma^4/4 + 43*Zeta[4]/8, 10, 120][[1]]

Formula

Equals -gamma_3 - 3*gamma*gamma_2 - 3*gamma^2*gamma_1 - (3/4)*gamma^4 + (43/8)*zeta(4), where gamma_1, gamma_2 and gamma_3 are the 1st, 2nd and 3rd Stieltjes constants (A082633, A086279, A086280).

A120308 Numerator((p-1)*H(p-1))/p^2 for p = prime(n) > 3, where H(k) is k-th harmonic number A001008(k)/A002805(k).

Original entry on oeis.org

1, 3, 61, 509, 8431, 118623, 36093, 375035183, 9682292227, 40030624861, 1236275063173, 46600968591317, 2690511212793403, 5006621632408586951, 73077117446662772669, 4062642402613316532391, 139715526178793824689891
Offset: 3

Views

Author

Alexander Adamchuk, Jul 16 2006

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((NthPrime(n)-1)*HarmonicNumber(NthPrime(n)-1)/NthPrime(n)^2): n in [3..25]]; // G. C. Greubel, Sep 02 2018
  • Maple
    N:= 50: # to get the first N terms
    Primes:= select(isprime,[seq(2*i+1,i=2..(ithprime(N+2)-1)/2)]):
    H:= ListTools[PartialSums]([seq(1/i,i=1..Primes[-1]-1)]):
    seq(numer((p-1)*H[p-1])/p^2, p=Primes); # Robert Israel, Sep 09 2014
  • Mathematica
    Numerator[Table[(Prime[n]-1)*(Sum[(1/k), {k, 1, Prime[n]-1}]),{n,3,20}]]/Table[Prime[n]^2,{n,3,20}]
    Table[((p-1)HarmonicNumber[p-1])/p^2,{p,Prime[Range[2,20]]}]//Numerator (* Harvey P. Dale, May 19 2021 *)
  • PARI
    {a(n) = numerator((prime(n)-1)*sum(k=1,prime(n)-1, 1/k)/prime(n)^2)};
    for(n=3,25, print1(a(n), ", ")) \\ G. C. Greubel, Sep 02 2018
    

Formula

a(n) = numerator((prime(n)-1)*(Sum_{k=1..prime(n)-1} 1/k))/prime(n)^2 for n > 2.
a(n) = A096617(p-1)/p^2 for p = prime(n) > 3.

A348373 Decimal expansion of Sum_{k>=1} H(k)^2/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

2, 1, 2, 5, 3, 8, 7, 0, 8, 0, 7, 6, 6, 4, 2, 7, 8, 6, 1, 1, 3, 9, 5, 1, 7, 6, 9, 2, 9, 7, 2, 6, 9, 0, 1, 6, 0, 9, 4, 9, 5, 0, 2, 8, 5, 2, 8, 0, 1, 3, 4, 4, 0, 2, 4, 6, 0, 2, 4, 2, 2, 3, 6, 2, 9, 9, 3, 6, 7, 2, 8, 5, 2, 6, 6, 3, 0, 3, 5, 3, 4, 6, 0, 3, 3, 5, 7, 7, 1, 6, 4, 0, 6, 3, 6, 8, 5, 6, 9, 6, 2, 3, 6, 7, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 15 2021

Keywords

Examples

			2.12538708076642786113951769297269016094950285280134...
		

Crossrefs

Similar constants: A016627, A076788.

Programs

  • Mathematica
    RealDigits[Pi^2/6 + Log[2]^2, 10, 100][[1]]

Formula

Equals Pi^2/6 + log(2)^2 = A013661 + A253191.

A360029 Consider a ruler composed of n segments with lengths 1, 1/2, 1/3, ..., 1/n with total length A001008(n)/A002805(n). a(n) is the minimum number of distinct distances of all pairs of marks that can be achieved by permuting the positions of the segments.

Original entry on oeis.org

1, 3, 6, 10, 15, 18, 25, 33, 42, 52, 63, 71, 84, 98, 107, 123, 140, 152, 171, 185, 198, 220, 243, 256, 281, 307, 334, 354, 383, 403, 434, 466, 489, 523, 552, 581, 618, 656, 695, 728
Offset: 1

Views

Author

Hugo Pfoertner, Jan 22 2023

Keywords

Comments

Without permutation of the arrangement of the segments, the number of distinct distances between any pair of marks is n*(n+1)/2.

Examples

			a(6) = 18: permuted segment lengths 1, 1/4, 1/2, 1/3, 1/6, 1/5 -> marks at 0, 1, 5/4, 7/4, 25/12, 9/4, 49/20 -> 18 distinct distances 1/6, 1/5, 1/4, 1/3, 11/30, 1/2, 7/10, 3/4, 5/6, 1, 13/12, 6/5, 5/4, 29/20, 7/4, 25/12, 9/4, 49/20, whereas the non-permuted ruler with marks at 0, 1, 3/2, 11/6, 25/12, 137/60, 49/20 gives 21 distinct distances 1/6, 1/5, 1/4, 1/3, 11/30, 9/20, 1/2, 7/12, 37/60, 47/60, 5/6, 19/20, 1, 13/12, 77/60, 29/20, 3/2, 11/6, 25/12, 137/60, 49/20.
		

Crossrefs

Programs

  • PARI
    a360029(n) = {if (n<=1, 1, my (mi=oo); w = vectorsmall(n-1, i, i+1);
    forperm (w, p, my(v=vector(n,i,1/i), L=List(v)); for (m=1, n, v[m] = 1 + sum (k=1, m-1, 1/p[k]); listput(L, v[m])); for (i=1, n-1, for (j=i+1, n, listput (L, v[j]-v[i]))); mi = min(mi, #Set(L))); mi)};

Extensions

a(39)-a(40) from Hugo Pfoertner, Feb 19 2023

A370742 Decimal expansion of Sum_{k>=2} H(k-1) * F(k) / (k*2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and F(k) = A000045(k) is the k-th Fibonacci number.

Original entry on oeis.org

5, 9, 6, 6, 7, 3, 4, 8, 7, 8, 3, 3, 9, 8, 2, 6, 9, 7, 3, 7, 7, 7, 0, 6, 8, 2, 4, 3, 6, 8, 3, 3, 0, 8, 3, 9, 2, 4, 6, 8, 7, 9, 6, 7, 0, 4, 2, 1, 8, 3, 8, 8, 2, 8, 2, 8, 6, 6, 0, 6, 1, 5, 1, 7, 6, 4, 1, 9, 6, 3, 6, 7, 5, 0, 1, 0, 6, 9, 8, 1, 2, 4, 3, 9, 9, 1, 8, 2, 3, 9, 6, 8, 1, 6, 1, 1, 0, 9, 3, 9, 6, 9, 5, 3, 7
Offset: 0

Views

Author

Amiram Eldar, Feb 29 2024

Keywords

Examples

			0.59667348783398269737770682436833083924687967042183...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4 * Log[2] * Log[GoldenRatio] / Sqrt[5], 10, 120][[1]]
  • PARI
    4 * log(2) * log(quadgen(5)) / sqrt(5)

Formula

Equals 4 * log(2) * log(phi) / sqrt(5), where phi is the golden ratio (A001622) (Davenport, 2018).

A370743 Decimal expansion of Sum_{k>=2} H(k-1) * L(k) / (k*2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and L(k) = A000032(k) is the k-th Lucas number.

Original entry on oeis.org

1, 4, 0, 6, 7, 1, 2, 2, 9, 6, 2, 2, 6, 9, 7, 8, 9, 9, 4, 6, 5, 4, 8, 1, 8, 8, 1, 1, 2, 5, 2, 7, 9, 6, 0, 1, 1, 7, 9, 6, 1, 7, 8, 3, 5, 1, 7, 9, 1, 7, 4, 1, 0, 7, 0, 1, 2, 8, 0, 6, 9, 0, 4, 8, 3, 8, 2, 8, 4, 6, 7, 6, 4, 5, 2, 7, 6, 8, 1, 7, 2, 4, 1, 4, 0, 1, 6, 6, 4, 5, 1, 7, 8, 9, 4, 8, 0, 5, 7, 1, 1, 5, 5, 6, 8
Offset: 1

Views

Author

Amiram Eldar, Feb 29 2024

Keywords

Examples

			1.40671229622697899465481881125279601179617835179174...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[2]^2 + 4*Log[GoldenRatio]^2, 10, 120][[1]]
  • PARI
    log(2)^2 + 4*log(quadgen(5))^2

Formula

Equals log(2)^2 + 4*log(phi)^2, where phi is the golden ratio (A001622) (Davenport, 2018).

A248979 Numbers n such that 11 is not a divisor of A002805(11*n).

Original entry on oeis.org

0, 33, 77, 110, 847, 880, 924, 957, 1210, 1243, 1287, 1320, 9328, 9372, 9416, 9702, 9768, 10538, 10582, 10626, 14201, 14223, 102608, 102641, 102685, 102718, 103136, 103158, 116413, 116457, 116501, 156255, 156277, 1128688, 1128721, 1128765, 1128798, 1129073
Offset: 1

Views

Author

Matthijs Coster, Oct 18 2014

Keywords

Comments

For other primes after a few exceptions it seems that all denominators of harmonic numbers are divisible by that prime. For 11 there are many more exceptions. Maybe infinitely many?

Examples

			33 is in the sequence since H(33) = p/q and 11 is not a divisor of q. Here H(n) = Sum_{i=1..n} 1/i.
Of course if H(33) has no denominator with a factor 11 the same is true for 34, 35, ..., 43.
		

Crossrefs

Cf. A002805.

Programs

  • PARI
    lista(nn) = {forstep (n=0, nn, 11, if (denominator(sum(k=2,n,1/k)) % 11, print1(n, ", ")););} \\ Michel Marcus, Oct 19 2014
  • Sage
    n = 10000
    sum11 = 0
    resu = [0]
    for i in range(11, n, 11):
        D = (1 / i).partial_fraction_decomposition()[1]
        sum11 += sum(v for v in D if 11.divides(v.denominator()))
        if sum11 >= 1:
            sum11 -= 1
        if sum11 == 0:
            resu.append(i)
    resu
    
Previous Showing 21-30 of 390 results. Next