cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A127654 Unitary aspiring numbers.

Original entry on oeis.org

66, 78, 244, 292, 476, 482, 578, 648, 680, 688, 770, 784, 832, 864, 956, 958, 976, 1168, 1354, 1360, 1392, 1488, 1600, 1658, 1670, 1906, 2232, 2264, 2294, 2376, 2480, 2552, 2572, 2576, 2626, 2712, 2732, 2806, 2842, 2870, 2904, 2912, 2992, 3024, 3096, 3140, 3172
Offset: 1

Views

Author

Ant King, Jan 24 2007

Keywords

Comments

A unitary aspiring number is an integer whose unitary aliquot sequences ends by meeting a unitary-perfect number (A098185) in its trajectory, but is not unitary-perfect itself. There are 1693 such numbers <=100000 and of these 82860 and 97020 generate the longest unitary aliquot sequences (according to A097032), each having length 18 and ending with the unitary perfect number 90.

Examples

			a(5) = 476 because the fifth non-unitary-perfect number whose unitary aliquot sequence ends in a unitary-perfect number is 476.
		

Crossrefs

Programs

  • Mathematica
    UnitaryDivisors[n_Integer?Positive] := Select[Divisors[n], GCD[ #, n/# ] == 1 \ &]; sstar[n_] := Plus @@ UnitaryDivisors[ n] - n; g[n_] := If[n > 0, sstar[n], 0]; UnitaryTrajectory[n_] := Most[NestWhileList[ g, n, UnsameQ, All]]; UnitaryPerfectNumberQ[0] = 0; UnitaryPerfectNumberQ[k_] := If[sstar[k] == k, True, False]; UnitaryAspiringNumberQ[k_] := If[UnitaryPerfectNumberQ[Last[ UnitaryTrajectory[k]]] && ! UnitaryPerfectNumberQ[k], True, False]; Select[Range[2500], UnitaryAspiringNumberQ[ # ] &]
    s[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; s[0] = s[1] = 0; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-1]] != n && v[[-2]] == v[[-1]] > 0]; Select[Range[3200], q] (* Amiram Eldar, Mar 11 2023 *)

Extensions

More terms from Amiram Eldar, Mar 11 2023

A318883 Number of transient terms if unitary-proper-divisor-sum-function f(x) = A063919(x) is iterated and the initial value is n.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 3, 2, 4, 1, 3, 1, 2, 1, 3, 1, 0, 1, 1, 3, 4, 2, 4, 1, 5, 2, 4, 1, 0, 1, 2, 3, 3, 1, 4, 1, 4, 3, 4, 1, 0, 2, 2, 2, 2, 1, 0, 1, 5, 2, 1, 2, 2, 1, 5, 2, 6, 1, 4, 1, 5, 2, 4, 2, 1, 1, 5, 1, 3, 1, 5, 2, 4, 4, 4, 1, 0, 3, 4, 3, 5, 2, 5, 1, 5, 3, 1, 1, 1, 1, 5, 5
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2018, after Labos Elemer's A097033

Keywords

Comments

This sequence implements the original definition given for A097033.

Examples

			For n = 1, A063919(1) = 1, that is, we immediately end with a terminal cycle (of length 1 in this case), thus there are no transient part, and a(1) = 0.
For n = 2, A063919(2) = 1, and A063919(1) = 1, so we end with a terminal cycle after a transient part of length 1, thus a(2) = 1.
For n = 30, A063919(30) = 42, A063919(42) = 54, A063919(54) = 30, thus a(30) = a(42) = a(54) = 0, as 30, 42 and 54 are all contained in their own terminal cycle, without a preceding transient part.
For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 6.
If a(n) = 0, then n is a term in an attractor set like A002827, A063991, A097024, A097030.
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>1
    transient[k_] := Module[{iter=NestWhileList[a063919, k, UnsameQ, All]}, Position[iter, Last[iter]][[1, 1]]]-1
    a318883[n_] := Map[transient, Range[n]]
    a318883[105] (* Hartmut F. W. Hoft, Jan 25 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A063919(n) = if(1==n,n,A034460(n));
    A318883(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(mapget(visited, n)-1), mapput(visited, n, j)); n = A063919(n)); };
    \\ Or by using lists:
    pil(item,lista) = { for(i=1,#lista,if(lista[i]==item,return(i))); (0); };
    A318883(n) = { my(visited = List([]), k); for(j=1, oo, if((k = pil(n,visited)) > 0, return(k-1)); listput(visited, n); n = A063919(n)); };

Formula

a(n) = A318882(n) - A097031(n).
a(n) = A097033(n) + A318880(n) - 1.

A327157 Numbers that are members of unitary sigma aliquot cycles (union of unitary perfect, unitary amicable and unitary sociable numbers).

Original entry on oeis.org

6, 30, 42, 54, 60, 90, 114, 126, 1140, 1260, 1482, 1878, 1890, 2142, 2178, 2418, 2958, 3522, 3534, 3582, 3774, 3906, 3954, 3966, 3978, 4146, 4158, 4434, 4446, 18018, 22302, 24180, 29580, 32130, 35220, 35238, 35340, 35820, 37740, 38682, 39060, 39540, 39660, 39780, 40446, 41460, 41580, 44340, 44460, 44772, 45402
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2019

Keywords

Comments

Positions of nonzeros in A327159.
Numbers n for which n = A034460^k(n) for some k >= 1, where A034460^k(n) means k-fold application of A034460 starting from n.
The terms that are not multiples of 6 are: 142310, 168730, 1077890, 1099390, 1156870, 1292570, ..., that seem all to be present in A063991.
Among the first 440 terms, there are numbers present in 1-cycles (A002827), 2-cycles (A063991), and also cycles of sizes 3, 4 (A319902), 5 (A097024), 6 (A319917), 14 (A097030), 25, 26, 39 and 65.

Examples

			6 is a member as A034460(6) = 6.
30 is a member as A034460(A034460(A034460(30))) = 30.
		

Crossrefs

Subsequence of A003062.

Programs

  • Mathematica
    (* Function cycleL[] and support a034460[] are defined in A327159 *)
    a327157[n_] := Map[cycleL, Range[n]]
    a327157[45402] (* Hartmut F. W. Hoft, Feb 04 2024 *)
  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A034460(n) = (A034448(n) - n);
    memo327159 = Map();
    A327159(n) = if(1==n,0,my(v,orgn=n,xs=Set([])); if(mapisdefined(memo327159, n, &v), v, while(n && !vecsearch(xs,n), xs = setunion([n],xs); n = A034460(n); if(mapisdefined(memo327159,n),for(i=1,#xs,mapput(memo327159,xs[i],0)); return(0))); if(n==orgn,v = length(xs); for(i=1,v,mapput(memo327159,xs[i],v)), v = 0; mapput(memo327159,orgn,v)); (v)));
    k=0; n=0; while(k<=1001, n++; if(t=A327159(n), k++; print(n," -> ",t); write("b327157.txt", k," ", n)));

A097034 Initial values for iteration of the function f(x) = A063919(x) such that the iteration ends in a 14-cycle, i.e., in A097030.

Original entry on oeis.org

1506, 1518, 1806, 1902, 1914, 1938, 1950, 2226, 2382, 2394, 2406, 2418, 2478, 2826, 2910, 2946, 2958, 3234, 3282, 3294, 3330, 3510, 3522, 3534, 3546, 3582, 3642, 3654, 3774, 3906, 3954, 3966, 3978, 4146, 4158, 4194, 4434, 4446, 4854, 4866, 4878, 5262
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			n=1506 is here because its iteration list = {1506, 1518, 1938, 2382, 2394, 2406, [2418, ...., 3582, 2418}. After a transient of length 6, the iteration ends in a cycle of length 14.
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] :=
     Total[Select[Divisors[n], GCD[#, n/#] == 1 &]] - n /; n > 1
    a097034Q[k_] :=
     Module[{iter = NestWhileList[a063919, k, UnsameQ, All]},
      Apply[Subtract, Reverse[Flatten[Position[iter, Last[iter]], 1]]] ==
       14]
    a097034[n_] := Select[Range[n], a097034Q]
    a097034[5262] (* Hartmut F. W. Hoft, Jan 25 2024 *)

A097035 Initial values for the iteration of the function f(x) = A063919(x) such that the iteration ends in a 5-cycle, i.e., in A097024.

Original entry on oeis.org

570, 870, 1230, 1290, 1326, 1482, 1530, 1686, 1698, 1710, 1794, 1866, 1878, 1890, 2058, 2070, 2142, 2154, 2166, 2178, 2238, 2250, 2502, 2802, 2814, 3042, 3222, 3630, 3702, 3714, 3726, 4350, 4494, 4506, 4518, 4914, 5010, 5142, 5154, 5166, 5284, 5418
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			n = 570: list = {570, 870, 1290, [1878, 1890, 2142, 2178, 1482], 1878}; after 3 transients, a 5-cycle arises.
n = 1230: {1230, 1794, 2238, 2250, 1530, 1710, [1890, 2142, 2178, 1482, 1878]} ; the iteration to the 5-cycle is not necessarily monotone. - _Hartmut F. W. Hoft_, Jan 25 2024
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>1
    a097035Q[k_] := Module[{iter=NestWhileList[a063919, k, UnsameQ, All]}, Apply[Subtract, Reverse[Flatten[Position[iter, Last[iter]], 1]]]==5]
    a097035[n_] := Select[Range[n], a097035Q]
    a097035[5418] (* Hartmut F. W. Hoft, Jan 25 2024 *)

A322486 Semi-unitary perfect numbers: numbers k such that susigma(k) = 2k, where susigma(k) is the sum of the semi-unitary divisors of k (A322485).

Original entry on oeis.org

6, 60, 90, 264, 3960, 4560, 8736, 13770, 131040, 384384, 605880, 5765760, 20049120, 882161280, 23253135360
Offset: 1

Views

Author

Amiram Eldar, Dec 11 2018

Keywords

Comments

a(16) <= 1846273228800. - David A. Corneth, Dec 11 2018

Examples

			264 is in the sequence since its sum of semi-unitary divisors is susigma(264) = 528 = 2 * 264.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^Floor[(e+1)/2] - 1)/(p-1) + p^e; susigma[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; aQ[n_] := susigma[n]==2n; Select[Range[10000], aQ]
  • PARI
    ssu(n) = {my(f = factor(n)); for (k=1, #f~, my(p=f[k,1], e=f[k,2]); f[k,1] = (p^((e+1)\2) - 1)/(p-1) + p^e; f[k,2] = 1;); factorback(f);} \\ A322485
    isok(n) = ssu(n) == 2*n; \\ Michel Marcus, Dec 14 2018

A335202 Unitary Zumkeller numbers (A290466) whose set of unitary divisors can be partitioned into two disjoint sets of equal sum in a single way.

Original entry on oeis.org

6, 60, 70, 90, 3230, 3770, 4030, 4510, 5170, 5390, 5830, 50388, 87360, 269990, 442365, 544310, 592670, 740870, 1341230, 1772870, 4173070, 4199030, 5719266, 5728842, 5743206, 34473582, 624032630, 812851182, 1109686930, 1113445430, 2280959890, 55157757606
Offset: 1

Views

Author

Amiram Eldar, May 26 2020

Keywords

Examples

			60 is a term since there is only one partition of its set of unitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, into 2 disjoint sets whose sum is equal: 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60.
		

Crossrefs

The unitary version of A083209.
Subsequence of A290466.
A002827 is a subsequence.

Programs

  • Mathematica
    uzQ[n_] := Module[{d = Select[Divisors[n], CoprimeQ[#, n/#] &], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]]; Select[Range[6000], uzQ]

Extensions

Terms a(19) and beyond from Giovanni Resta, May 30 2020

A319917 Unitary sociable numbers of order six.

Original entry on oeis.org

698130, 698310, 698490, 712710, 712890, 713070, 341354790, 348612390, 391662810, 406468314, 411838938, 519891750, 530946330, 582129630, 596171970, 621549630, 717175170, 740700270, 740700450, 743324934, 838902150, 919121658, 1009954170, 1343332998
Offset: 1

Views

Author

Michel Marcus, Oct 01 2018

Keywords

Comments

Note that the first 6 terms and the next 6 terms form two sociable groups. But then the next 12 terms belong to two distinct sociable groups.

Crossrefs

Cf. A063919 (sum of proper unitary divisors).
Cf. A002827 (unitary perfect), A063991 (unitary amicable).
Cf. A319902 (order 4), A097024 (order 5), A097030 (order 14).

Programs

  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok6(n) = iferr(f(f(f(f(f(f(n)))))) == n, E, 0);
    isok3(n) = iferr(f(f(f(n))) == n, E, 0);
    isok2(n) = iferr(f(f(n)) == n, E, 0);
    isok1(n) = iferr(f(n) == n, E, 0);
    isok(n) = isok6(n) && !isok1(n) && !isok2(n) && !isok3(n);
    
  • PARI
    A063919(n) = my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2] + 1) - n
    is(n) = my(c = n); for(i = 1, 5, c = A063919(c); if(c == 1 || c == n, return(0))); c = A063919(c); c == n \\ David A. Corneth, Oct 01 2018

A327159 Size of the cycle containing n in the map x -> usigma(x)-x or 0 if n is not a member of any finite cycle. Here usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Examples

			Because A034460(6) = 6, a(6) = 1.
Because A034460(30) = 42, A034460(42) = 54, A034460(54) = 30, a(30) = a(42) = a(54) = 3.
Because A034460(90) = 90, a(90) = 1. Because A034460(78) = 90, a(78) = 0, as even though 78 ends into a cycle of one, it itself is not a part of that cycle.
		

Crossrefs

Cf. A002827 (positions of ones), A063991 (of 2's), A319902 (of 4's), A097024 (of 5's), A319917 (of 6's), A319937 (of 10's), A097030 (of 14's), A327157 (of all nonzero terms).

Programs

  • Mathematica
    a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *)
    a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#] == 1 &]] - n /; n > 0
    cycleL[k_] := Module[{nL=NestWhileList[a034460, k, UnsameQ, All]}, If[k==Last[nL], Length[nL]-1, 0]]
    a327159[n_] := Map[cycleL, Range[n]]
    a327159[120] (* Hartmut F. W. Hoft, Feb 04 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A327159(n,orgn=n,xs=Set([])) = if(1==n,0,if(vecsearch(xs,n), if(n==orgn,length(xs),0), xs = setunion([n],xs); A327159(A034460(n),orgn,xs)));

A387418 Numbers k such that the odd part of (1+k) divides (1 + odd part of A034448(k)), where A034448 is unitary sigma (usigma).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 1791, 2047, 2431, 4095, 8191, 14335, 14847, 16383, 27391, 32767, 44031, 57855, 65535, 114687, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1632255, 2056191, 2097151, 2744319, 4194303, 6815743, 8388607, 8781823, 8978431, 12058623, 16777215, 19922943, 24068095
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. The initial 1 is probably the only term that is not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A002827, A004767, A034448.
For similar sequences, see A336700, A387410, A387415, A387419.

Programs

Previous Showing 21-30 of 45 results. Next