cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A343869 Number of unlabeled nonseparable (or 2-connected) planar graphs with n edges.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 7, 16, 41, 108, 320, 1042, 3575, 13064, 49938, 197729, 805991, 3363084, 14302891, 61813285, 270805177, 1200460492, 5376709415, 24302430375, 110745093999, 508380790741
Offset: 1

Views

Author

Andrew Howroyd, May 04 2021

Keywords

Comments

Terms may be computed using the tools geng and planarg in nauty.

Crossrefs

Row sums of A343870.
Column sums of A049336(n > 1).
Cf. A002840 (3-connected), A010355, A021103, A046091, A289471, A291841.

Programs

  • nauty
    # count graphs for the sequence by number of vertices v, sum over v afterwards
    geng -C $v $n:$n | planarg -q | countg -q # Georg Grasegger, Jun 05 2023

Extensions

a(21)-a(26) added by Georg Grasegger, Jun 05 2023

A005645 Number of sensed 3-connected planar maps with n edges.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 15, 32, 89, 266, 797, 2496, 8012, 26028, 85888, 286608, 965216, 3278776, 11221548, 38665192, 134050521, 467382224, 1638080277, 5768886048, 20407622631, 72494277840, 258527335373, 925322077852, 3323258053528, 11973883092034, 43273374700200, 156836969693756, 569967330200576, 2076647113454878, 7584534277720818, 27764845224462192, 101862027752012402, 374484866509396780, 1379489908513460150
Offset: 6

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002840 (unsensed), A239893.

Formula

a(n) = Sum_{k=4..n-2} A239893(k, n+2-k). - Andrew Howroyd, Mar 27 2021

Extensions

More terms and b-file added by N. J. A. Sloane, May 08 2012

A378076 Number of embeddings on the sphere of 2-connected homeomorphically irreducible planar graphs with n edges.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 16, 37, 100, 293, 888, 2822, 9305, 31274, 106972, 370828, 1298058, 4582413, 16289759, 58259600, 209465186
Offset: 6

Views

Author

Andrew Howroyd, Nov 15 2024

Keywords

Comments

Homeomorphically irreducible means each vertex has a degree of at least 3.

Crossrefs

Antidiagonal sums of A378075.

Formula

a(n) = A002840(n) + A187928(n).
a(n) = Sum_{k=4..n-2} A378075(k, n+2-k).

A289471 Number of planar strictly 2-connected graphs on n edges.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 7, 15, 39, 106, 316, 1030, 3553, 13006, 49780, 197281, 804649, 3358885, 14289507, 61769577
Offset: 1

Views

Author

Ed Pegg Jr, Jul 06 2017

Keywords

Crossrefs

Formula

a(n) = A343869(n) - A002840(n). - Andrew Howroyd, May 04 2021

Extensions

a(12)-a(13) corrected and a(14)-a(20) from Andrew Howroyd, May 04 2021

A340920 a(n) is the number of distinct resistances that can be produced from a planar circuit with exactly n unit resistors.

Original entry on oeis.org

1, 1, 2, 4, 9, 23, 57, 151, 427, 1263, 3807, 11549, 34843, 104459, 311317, 928719, 2776247, 8320757, 24967341, 74985337
Offset: 0

Views

Author

Hugo Pfoertner and Rainer Rosenthal, Feb 14 2021

Keywords

Examples

			a(10) = 3807, whereas A337517(10) = 3823. The difference of 16 resistances results from the 15 terms of A338601/A338602 and the resistance 34/27 not representable by a planar network of 10 resistors, whereas it (but not 27/34) can be represented by a nonplanar network of 10 resistors.
		

Crossrefs

Programs

Formula

a(n) = A337517(n) for n <= 9, a(n) < A337517(n) for n >= 10.

Extensions

a(19) from Hugo Pfoertner, Mar 15 2021

A343871 Number of labeled 3-connected planar graphs with n edges.

Original entry on oeis.org

1, 0, 15, 70, 432, 4320, 30855, 294840, 2883240, 28175952, 310690800, 3458941920, 40459730640, 499638948480, 6324655705200, 83653192972800, 1145266802114400, 16145338385736000, 235579813593453000, 3535776409508703360, 54571687068401395200, 866268656574795936000
Offset: 6

Views

Author

Andrew Howroyd, May 05 2021

Keywords

Crossrefs

Cf. A000287, A002840 (unlabeled case), A096330, A290326, A291841, A338414.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices (see A290326)
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    a(n)={sum(k=2+(n+2)\3, 2*n\3, k!*Q(n,k))/(4*n)} \\ Andrew Howroyd, May 05 2021

Formula

a(n) = Sum_{k=2+floor((n+2)/3)..floor(2*n/3)} k!*A290326(n-k+1, k-1)/(4*n).

A289470 Number of strictly 2-connected graphs with n edges.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 7, 15, 39, 107, 324, 1072, 3778, 14228, 56568, 235449, 1021381, 4596328, 21383982, 102594132, 506544749, 2569520447, 13372902590, 71322154244, 389402949706
Offset: 1

Views

Author

Ed Pegg Jr, Jul 06 2017

Keywords

Crossrefs

Formula

a(n) = A010355(n) - A338511(n). - Andrew Howroyd, May 03 2021

Extensions

a(12)-a(13) corrected and a(14)-a(25) from Andrew Howroyd, May 03 2021

A355638 Number of polyhedra (3-polytopes) of graph radius 1 on n edges.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 4, 5, 7, 10, 16, 27, 42, 67, 116, 187, 329, 570, 970, 1723, 3021, 5338, 9563, 16981, 30517, 54913, 98847, 179119, 324333, 589059, 1072997, 1955207, 3573129, 6538088
Offset: 6

Views

Author

Riccardo Maffucci, Jul 11 2022

Keywords

Comments

Data was gathered with the help of Scientific IT & Application Support (SCITAS) High Performance Computing (HPC) for the EPFL community.

Examples

			For n=6 there is only the tetrahedron, n=8 the square pyramid, n=9 the triangular bipyramid,...
		

Crossrefs

Cf. A002840.

Programs

  • Mathematica
    Needs["IGraphM`"]
    ra[8]:={Square pyramid}
    ra[q]=opb[ra[q-1]]
    opb[setg_] :=
    Prepend[DeleteDuplicatesBy[
       Flatten[Table[
         EdgeAdd[g, UndirectedEdge[x[[1]], x[[2]]],
          GraphLayout -> "TutteEmbedding"], {g, setg}, {x,
          Flatten[Table[
            Complement[Subsets[i, {2}],
             Table[{i[[j]], i[[j + 1]]}, {j, Length[i] - 1}], {{i[[1]],
               i[[-1]]}}], {i, Select[IGFaces[g], Length[#] > 3 &]}],
           1]}]], CanonicalGraph],
      If[OddQ[EdgeCount[setg[[1]]]],
       WheelGraph[EdgeCount[setg[[1]]]/2 + 3/2,
        GraphLayout -> "TutteEmbedding", ImageSize -> 25], Nothing]]
Previous Showing 11-18 of 18 results.