cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A322059 Expansion of generating function related to a certain class of combinatorial objects.

Original entry on oeis.org

1, 3, 8, 21, 50, 128
Offset: 1

Views

Author

N. J. A. Sloane, Dec 25 2018

Keywords

Comments

For precise definition see Example 15.3.6 of Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 1001-1002.
Apparently this has been computed by series inversion (INVERT transform) of the generating function x+2*x^2+3*x^3+4*x^4, which is not related to a Cyc. transformation (as claimed by Bona) (??) To obtain an interpretation from the Polya cycle index for the group of cyclic permutations, one would have to plug in the g.f. x+2*x^2+5*x^3+10*x^4+18*x^5+26*x^6+.. and it's difficult to associate this with any sort of marked linear chains of length up to 4 (because terms of x^5 and higher are needed). - R. J. Mathar, Feb 06 2025

Crossrefs

Cf. A322060, A380886 (column 4), A380890 (cycles of rooted chains), A032198 (cycles of directed linear chains), A002861 (cycles of rooted trees).

A032175 Number of connected functions of n points with no symmetries.

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 42, 91, 208, 470, 1089, 2509, 5869, 13730, 32371, 76510, 181708, 432635, 1033656, 2475384, 5943395, 14299532, 34475030, 83263872, 201441431, 488092897, 1184353643, 2877611984, 7000359244, 17049288304, 41568056484, 101449503960, 247828380511
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, n, add(g(n-k)*add(g(d)*d*
           (-1)^(k/d+1), d=numtheory[divisors](k)), k=1..n-1)/(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(j-1-a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> g(n)+b(n, n-1):
    seq(a(n), n=1..40);  # Alois P. Heinz, May 19 2022
  • Mathematica
    g[n_] := g[n] = If[n < 2, n, Sum[g[n - k]*Sum[g[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n - 1}]/(n - 1)];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[j - 1 - a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := g[n] + b[n, n - 1];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, May 20 2022, after Alois P. Heinz *)
  • PARI
    \\ here IdTreeGf is g.f. of A004111.
    IdTreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1) * d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={Vec(CHK(IdTreeGf(n), n))} \\ Andrew Howroyd, Aug 31 2018

Formula

"CHK" (necklace, identity, unlabeled) transform of A004111.

A127136 Triangle read by rows: T(n,k) is the number of endofunctions on n objects with k components.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 9, 7, 2, 1, 20, 17, 7, 2, 1, 51, 48, 21, 7, 2, 1, 125, 127, 60, 21, 7, 2, 1, 329, 352, 174, 65, 21, 7, 2, 1, 862, 963, 504, 190, 65, 21, 7, 2, 1, 2311, 2689, 1456, 570, 196, 65, 21, 7, 2, 1, 6217, 7496, 4212, 1684, 590, 196, 65, 21, 7, 2, 1
Offset: 1

Views

Author

Keywords

Comments

For k > n/2, T(n,k) = T(n-1,k-1). - Geoffrey Critzer, Oct 13 2012

Examples

			For n = 3, the 7 endofunctions are (1,2,3) -> (1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,2,3), (1,3,2) and (2,3,1). The components are respectively 123, 123, 13|2, 123, 1|2|3, 1|23 and 123; the number of components is thus 1, 1, 2, 1, 2, 3, 2, 1, so row 3 is 4,2,1.
The triangle starts:
   1;
   2,  1;
   4,  2,  1;
   9,  7,  2,  1;
  20, 17,  7,  2,  1;
		

Crossrefs

Cf. A001372 (row sums), A127124, A127125, A002861 (first column).

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[1/(1-y x^i)^c[[i]],{i,1,nn-1}],{x,0,10}],{x,y}]//Grid  (* Geoffrey Critzer, Oct 13 2012, after code given by Robert A. Russell in A000081 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k*y)^A002861(k).

Extensions

More terms from Geoffrey Critzer, Oct 13 2012
Corrected and extended by Alois P. Heinz, May 24 2013

A124933 Number of prime divisors (counted with multiplicity) of number of endofunctions on n points (A001372).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 3, 3, 2, 2, 2, 2, 2, 4, 2, 3, 5, 3, 3, 3, 3, 5, 3, 2, 7, 9, 5, 3, 5, 5, 6, 3, 5, 6, 1, 2, 5, 4, 3, 4, 3, 3, 7, 7, 5, 7, 8, 4, 12, 7, 8, 1, 7, 4, 2, 4, 5, 4, 2, 5, 4, 3, 5, 6, 12, 2, 3, 5, 2, 3, 4, 4, 3, 5, 6, 2, 6, 3, 5, 3, 7, 2, 3, 7, 7, 8, 6, 5, 2, 7, 7, 4, 10, 11, 7, 7, 5, 4, 5, 6
Offset: 0

Views

Author

Jonathan Vos Post, Nov 12 2006

Keywords

Comments

Number of prime divisors (counted with multiplicity) of A001372 Number of mappings (or mapping patterns) from n points to themselves; number of endofunctions. {n: a(n) = 1} give the primes, beginning: A001372(2) = 3, A001372(3) = 7, A001372(4) = 19, A001372(2) = 47. {n: a(n) = 2} give the semiprimes, beginning: A001372(8) = 951 = 3 * 317, A001372(9) = 2615 = 5 * 523, A001372(10) = 7318 = 2 * 3659, A001372(11) = 20491 = 31 * 661, A001372(12) = 57903 = 3 * 19301, A001372(14) = 466199 = 107 * 4357, A001372(23) = 6218869389 = 3 * 2072956463. 3-almost primes begin: A001372(6) = 130 = 2 * 5 * 13, A001372(7) = 343 = 7^3, A001372(15) = 1328993 = 19 * 113 * 619, A001372(17) = 10884049 = 11 * 353 * 2803, A001372(18) = 31241170 = 2 * 5 * 3124117, A001372(19) = 89814958 = 2 * 5113 * 8783, A001372(20) = 258604642 = 2 * 101 * 1280221, A001372(22) = 2152118306 = 2 * 13 * 82773781, A001372(27) = 437571896993.

Crossrefs

Formula

a(n) = Omega(A001372(n)) = A001222(A001372(n)).

Extensions

More terms from R. J. Mathar, Sep 23 2007

A127911 Number of nonisomorphic partial functional graphs with n points which are not functional graphs.

Original entry on oeis.org

0, 1, 3, 9, 26, 74, 208, 586, 1647, 4646, 13135, 37247, 105896, 301880, 862498, 2469480, 7083690, 20353886, 58571805, 168780848, 486958481, 1406524978, 4066735979, 11769294050, 34090034328, 98820719105, 286672555274
Offset: 0

Views

Author

Jonathan Vos Post, Feb 06 2007

Keywords

Comments

Partial functional graphs (digraphs) with at least one node of outdegree = 0.

Examples

			a(0) = 0 because the null graph is trivially both partial functional and functional.
a(1) = 1 because there are two partial functional graphs on one point: the point with, or without, a loop; the point with loop is the identity function, but without a loop the naked point is the unique merely partial functional case.
a(2) = 3 because there are A126285(2) enumerates the 6 partial functional graphs on 2 points, of which 3 are functional, 6 - 3 = 3.
a(3) = A126285(3) - A001372(3) = 16 - 7 = 9.
a(4) = 45 - 19 = 26.
a(5) = 121 - 47 = 74.
a(6) = 338 - 130 = 208.
a(7) = 929 - 343 = 586.
a(8) = 2598 - 951 = 1647.
a(9) = 7261 - 2615 = 4646.
a(10) = 20453 - 7318 = 13135.
		

References

  • S. Skiena, "Functional Graphs." Section 4.5.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 164-165, 1990.

Crossrefs

Formula

a(n) = A126285(n) - A001372(n).
Euler transform of (A002861 + A000081) - Euler transform of A002861.

A127912 Number of nonisomorphic disconnected mappings (or mapping patterns) from n points to themselves; number of disconnected endofunctions.

Original entry on oeis.org

0, 1, 3, 10, 27, 79, 218, 622, 1753, 5007, 14274, 40954, 117548, 338485, 975721, 2817871, 8146510, 23581381, 68322672, 198138512, 575058726, 1670250623, 4854444560, 14117859226, 41081418963, 119606139728
Offset: 0

Views

Author

Jonathan Vos Post, Feb 06 2007

Keywords

Comments

Number of endofunctions on n points whose functional digraphs (with loops allowed) are nontrivially the directed sum of two or more digraphs of endofunctions.

Examples

			a(0) = 0, as the null digraph is formally neither connected nor disconnected.
a(1) = 0, as the unique endofunction on one point is the identity function on one value and is connected.
a(2) = 1, as there are 3 endofunctions on two points, two of which are "prime endofunctions" and one of which is the direct sum of two copies of the unique endofunction on one point, namely two points-with-loops, or the identity function on two values; 3 - 2 = 1.
a(3) = A001372(3) - A002861(3) = 7 - 4 = 3.
a(4) = A001372(4) - A002861(4) = 19 - 9 = 10.
a(5) = A001372(5) - A002861(5) = 47 - 20 = 27.
a(6) = 130 - 51 = 79.
a(7) = 343 - 125 = 218.
a(8) = 951 - 329 = 622.
a(9) = 2615 - 862 = 1753.
a(10) = 7318 - 2311 = 5007.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.399 and 41.401.

Crossrefs

Formula

a(n) = A001372(n) - A002861(n).

A217859 Triangular array read by rows. T(n,k) is the number of functions on n unlabeled nodes that have exactly k unique components (n >= 1, k >= 1).

Original entry on oeis.org

1, 3, 5, 2, 12, 7, 21, 25, 1, 58, 63, 9, 126, 178, 39, 341, 466, 140, 4, 867, 1253, 470, 25, 2334, 3418, 1431, 135, 6218, 9365, 4358, 544, 6, 17016, 25924, 12871, 2042, 50, 46351, 72207, 37993, 7056, 291, 127842, 202345, 111142, 23483, 1383, 4, 353297, 568822, 325359, 75701, 5754, 60
Offset: 1

Views

Author

Geoffrey Critzer, Oct 13 2012

Keywords

Comments

Row sums are A001372.
T(n,1) = A002861(n) + 1 when n is prime (counts connected functions and the identity function).

Examples

			Triangle begins:
       1;
       3,
       5,      2;
      12,      7;
      21,     25,      1;
      58,     63,      9;
     126,    178,     39;
     341,    466,    140,     4;
     867,   1253,    470,    25;
    2334,   3418,   1431,   135;
    6218,   9365,   4358,   544,    6;
   17016,  25924,  12871,  2042,   50;
   46351,  72207,  37993,  7056,  291;
  127842, 202345, 111142, 23483, 1383,  4;
  353297, 568822, 325359, 75701, 5754, 60;
T(3,2)=2 because (in the link) the third and the fifth digraphs on 3 nodes are composed of 2 unique components.
		

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[((y x^i +1-x^i)/(1-x^i))^c[[i]],{i,1,nn-1}],{x,0,15}],{x,y}]//Grid
    (* after code given by Robert A. Russell in A000081 *)

Formula

O.g.f.: Product_{n>=1} ((y*x^n - x^n + 1)/(1 - x^n))^A002861(n).

A217861 Number of functions on n unlabeled nodes in which all the components are distinct.

Original entry on oeis.org

1, 1, 2, 6, 14, 38, 103, 280, 773, 2160, 6053, 17064, 48320, 137260, 391091, 1117192, 3198217, 9173480, 26357393, 75845591, 218550709, 630536447, 1821184411, 5265514692, 15238183779, 44136519841, 127940010907, 371135327740, 1077340058523, 3129301019091, 7015876423459
Offset: 0

Views

Author

Geoffrey Critzer, Oct 13 2012

Keywords

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[(1+ x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]  (* after code given by Robert A. Russell in A000081 *)

Formula

O.g.f.: Product_{n>=1} (1 + x^n)^A002861(n).

A350571 Triangular array read by rows. T(n,k) is the number of unlabeled partial functions on [n] with exactly k undefined points, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 6, 2, 1, 19, 16, 7, 2, 1, 47, 45, 19, 7, 2, 1, 130, 121, 57, 20, 7, 2, 1, 343, 338, 158, 60, 20, 7, 2, 1, 951, 929, 457, 170, 61, 20, 7, 2, 1, 2615, 2598, 1286, 498, 173, 61, 20, 7, 2, 1, 7318, 7261, 3678, 1421, 510, 174, 61, 20, 7, 2, 1
Offset: 0

Views

Author

Geoffrey Critzer, Jan 06 2022

Keywords

Comments

It appears that the columns converge to A116950.

Examples

			Triangle T(n,k) begins:
    1;
    1,   1;
    3,   2,   1;
    7,   6,   2,   1;
   19,  16,   7,   2,  1;
   47,  45,  19,   7,  2,  1;
  130, 121,  57,  20,  7,  2, 1;
  343, 338, 158,  60, 20,  7, 2, 1;
  951, 929, 457, 170, 61, 20, 7, 2, 1;
  ...
		

References

  • O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009.

Crossrefs

Cf. A126285 (row sums), A001372 (column k=0), A000081, A002861.
Cf. A116950.

Programs

  • Mathematica
    nn = 10; A002861 = Cases[Import["https://oeis.org/A002861/b002861.txt",
        "Table"], {, }][[;; nn, 2]];
    A000081 = Drop[Cases[ Import["https://oeis.org/A000081/b000081.txt",
         "Table"], {, }][[;; nn + 1, 2]], 1];
    Map[Select[#, # > 0 &] &, CoefficientList[Series[ Product[1/(1 -  y x^i)^A000081[[i]], {i, 1, nn}] Product[1/(1 - x^i)^A002861[[i]], {i, 1, nn}], {x, 0, nn}], {x,y}]] // Grid

Formula

G.f.: Product_{i>=1} 1/(1-y*x^i)^A000081(i)*Product_{i>=1} 1/(1-x^i)^A002861(i).
Previous Showing 11-19 of 19 results.