cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 78 results. Next

A178802 Multiply, cell by cell, sequence A048996 by A178801.

Original entry on oeis.org

1, 1, 2, 2, 6, 12, 6, 24, 48, 24, 72, 24, 120, 240, 240, 360, 360, 480, 120, 720, 1440, 1440, 720, 2160, 4320, 720, 2880, 4320, 3600, 720, 5040, 10080, 10080, 10080, 15120, 30240, 15120, 15120, 20160, 60480, 20160, 25200, 50400, 30240, 5040, 40320, 80640, 80640, 80640, 40320, 120960
Offset: 0

Views

Author

Alford Arnold, Jun 15 2010

Keywords

Examples

			A048996 begins 1,1,1,1,1,2,1, 1, 2, 1, 3, 1 ...
A178801 begins 1,1,2,2,6,6,6,24,24,24,24,24,...
therefore
a(n)    begins 1,1,2,2,6,12,6,...
with row sums 1, 1, 4, 24, 192, 1920, 23040, ... .
Triangle begins:
    1;
    1;
    2,    2;
    6,   12,    6;
   24,   48,   24,  72,   24;
  120,  240,  240, 360,  360,  480, 120;
  720, 1440, 1440, 720, 2160, 4320, 720, 2880, 4320, 3600, 720;
  ...
		

Crossrefs

Cf. A000041, A000142, A048996, A178801, A002866 (row sums).

Formula

T(n,k) = A048996(n,k) * A178801(n,k) = A048996(n,k) * n!.

A274844 The inverse multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 8, 100, 1664, 34336, 843776, 24046912, 779780096, 28357004800, 1143189536768, 50612287301632, 2441525866790912, 127479926768287744, 7163315850315825152, 431046122080208896000, 27655699473265974050816, 1884658377677216933085184
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The inverse multinomial transform [IML] transforms an input sequence b(n) into the output sequence a(n). The IML transform inverses the effect of the multinomial transform [MNL], see A274760, and is related to the logarithmic transform, see A274805 and the first formula.
To preserve the identity MNL[IML[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL.
In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.
We observe that the inverse multinomial transform leaves the value of a(0) undefined.
The Maple programs can be used to generate the inverse multinomial transform of a sequence. The first program is derived from a formula given by Alois P. Heinz for the logarithmic transform, see the first formula and A001187. The second program uses the e.g.f. for multivariate row polynomials, see A127671 and the examples. The third program uses information about the inverse of the inverse of the multinomial transform, see A274760.
The IML transform of A001818(n) = ((2*n-1)!!)^2 leads quite unexpectedly to A005411(n), a sequence related to certain Feynman diagrams.
Some IML transform pairs, n >= 1: A000110(n) and 1/A000142(n-1); A137341(n) and A205543(n); A001044(n) and A003319(n+1); A005442(n) and A000204(n); A005443(n) and A001350(n); A007559(n) and A000244(n-1); A186685(n+1) and A131040(n-1); A061711(n) and A141151(n); A000246(n) and A000035(n); A001861(n) and A141044(n-1)/A001710(n-1); A002866(n) and A000225(n); A000262(n) and A000027(n).

Examples

			Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = (1/0!) * (1*x(1))
a(2) = (1/1!) * (1*x(2) - x(1)^2)
a(3) = (1/2!) * (1*x(3) - 3*x(2)*x(1) + 2*x(1)^3)
a(4) = (1/3!) * (1*x(4) - 4*x(3)*x(1) - 3*x(2)^2 + 12*x(2)*x(1)^2 - 6*x(1)^4)
a(5) = (1/4!) * (1* x(5) - 5*x(4)*x(1) - 10*x(3)*x(2) + 20*x(3)*x(1)^2 + 30*x(2)^2*x(1) -60*x(2)*x(1)^3 + 24*x(1)^5)
		

References

  • Richard P. Feynman, QED, The strange theory of light and matter, 1985.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: c:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*c(k), k=1..n-1)/n end: a := proc(n): c(n)/(n-1)! end: seq(a(n), n=1..nmax); # End first IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := log(1+add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(exp(add(t(n)*x^n/n, n=1..nmax)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): t(1):= b(1): for n from 2 to nmax+1 do t(n) := solve(d(n)-b(n), t(n)): a(n):=t(n): od: seq(a(n), n=1..nmax); # End third IML program.
  • Mathematica
    nMax = 22; b[n_] := ((2*n-1)!!)^2; c[n_] := c[n] = b[n] - Sum[k*Binomial[n, k]*b[n-k]*c[k], {k, 1, n-1}]/n; a[n_] := c[n]/(n-1)!; Table[a[n], {n, 1, nMax}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

Formula

a(n) = c(n)/(n-1)! with c(n) = b(n) - Sum_{k=1..n-1}(k*binomial(n, k)*b(n-k)*c(k)), n >= 1 and a(0) = undefined, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = A000079(n-1) * A005411(n), n >= 1.

A305578 a(n) = Sum_{k=0..n} binomial(n,k)*k!!*(n - k)!!.

Original entry on oeis.org

1, 2, 6, 18, 64, 230, 936, 3822, 17344, 78354, 389280, 1913010, 10267776, 54235350, 311348352, 1751907150, 10673326080, 63531238050, 408231498240, 2556121021650, 17236028160000, 113006008398150, 796296326031360, 5445783239554350, 39959419088977920, 284127133728611250
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2018

Keywords

Comments

Exponential convolution of A006882 with itself.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 2, 6, 18][n+1],
          3*n*a(n-2)-2*(n-3)*n*a(n-4))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 14 2018
  • Mathematica
    Table[Sum[Binomial[n, k] k!! (n - k)!!, {k, 0, n}], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[(1 + x Exp[x^2/2] (1 + Sqrt[Pi/2] Erf[x/Sqrt[2]]))^2, {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: (1 + x*exp(x^2/2)*(1 + sqrt(Pi/2)*erf(x/sqrt(2))))^2.

A308543 Expansion of e.g.f. exp(2*(exp(2*x) - 1)).

Original entry on oeis.org

1, 4, 24, 176, 1504, 14528, 155520, 1819392, 23019008, 312413184, 4518705152, 69279690752, 1120856170496, 19062628335616, 339681346551808, 6323658075340800, 122680376836358144, 2474677219852288000, 51799971194270646272, 1123121391647711035392
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[2 (Exp[2 x] - 1)], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 19; CoefficientList[Series[Sum[4^k x^k/Product[(1 - 2 j x), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = Sum[2^(k + 1) Binomial[n - 1, k - 1] a[n - k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 19}]
    Table[2^n BellB[n, 2], {n, 0, 19}]

Formula

O.g.f.: Sum_{k>=0} 4^k*x^k / Product_{j=1..k} (1 - 2*j*x).
E.g.f.: exp(4*exp(x)*sinh(x)).
E.g.f.: g(g(x) - 1), where g(x) = e.g.f. of A000079 (powers of 2).
E.g.f.: f(x)^4, where f(x) = e.g.f. of A004211 (shifts one place left under 2nd-order binomial transform).
a(0) = 1; a(n) = Sum_{k=1..n} 2^(k+1)*binomial(n-1,k-1)*a(n-k).
a(n) = Sum_{k=0..n} 2^(n+k)*Stirling2(n,k).
a(n) = exp(-2) * Sum_{k>=0} 2^(n+k)*k^n/k!.
a(n) = 2^n * A001861(n).

A308878 Expansion of e.g.f. (1 - log(1 + x))/(1 - 2*log(1 + x)).

Original entry on oeis.org

1, 1, 3, 14, 86, 664, 6136, 66240, 816672, 11331552, 174662304, 2961774144, 54785368128, 1097882522112, 23693117756928, 547844658441216, 13511950038494208, 354086653712228352, 9824794572366544896, 287752569360558907392, 8871374335098501292032
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Comments

Inverse Stirling transform of A002866.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - Log[1 + x])/(1 - 2 Log[1 + x]), {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[Sum[StirlingS1[n, k] 2^(k - 1) k!, {k, 1, n}], {n, 1, 20}]]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} Stirling1(n,k) * 2^(k-1) * k!.
a(n) ~ n! * exp(1/2) / (4 * (exp(1/2) - 1)^(n+1)). - Vaclav Kotesovec, Jun 29 2019

A317618 Expansion of e.g.f. sqrt((1 - x)/(1 - 3*x)).

Original entry on oeis.org

1, 1, 5, 39, 417, 5685, 94365, 1847475, 41686785, 1065288105, 30411314325, 959236098975, 33129890726625, 1243507150410525, 50401090111697325, 2193907232242600875, 102075654396429338625, 5055304328553234380625, 265522264682686831945125, 14742355948224269570580375
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2018

Keywords

Comments

Lah transform of A001147.

Crossrefs

Programs

  • Maple
    a:=series(sqrt((1 - x)/(1 - 3*x)), x=0, 20): seq(n!*coeff(a, x, n), n=0..19); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 19; CoefficientList[Series[Sqrt[(1 - x)/(1 - 3*x)], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n - 1, k - 1] (2 k - 1)!! n!/k!, {k, 0, n}], {n, 0, 19}]
    Join[{1}, Table[n! Hypergeometric2F1[3/2, 1 - n, 2, -2], {n, 19}]]
  • PARI
    my(x='x + O('x^25)); Vec(serlaplace(sqrt((1 - x)/(1 - 3*x)))) \\ Michel Marcus, Mar 26 2019

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1)*(2*k-1)!!*n!/k!.
a(n) ~ 2 * 3^(n - 1/2) * n^n / exp(n). - Vaclav Kotesovec, Mar 26 2019
D-finite with recurrence: (3*n^2 + 3*n)*a(n) + (-5 - 4*n)*a(n + 1) + a(n + 2)=0. - Robert Israel, Mar 26 2019

A318223 Expansion of e.g.f. exp(x/(1 + 2*x)).

Original entry on oeis.org

1, 1, -3, 13, -71, 441, -2699, 9157, 206193, -8443151, 236126701, -6169406979, 161388751657, -4327824442967, 120012465557349, -3450029411174219, 102741264191105761, -3160671409312412703, 99982488984008583133, -3230094912866216253971, 105481073534842477321881, -3423260541695907002392679
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 21 2018

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x/(1+2*x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 07 2019
    
  • Maple
    seq(n!*coeff(series(exp(x/(1+2*x)),x=0,22),x,n),n=0..21); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[x/(1 + 2 x)], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-2)^(n - k) Binomial[n - 1, k - 1] n!/k!, {k, 0, n}], {n, 0, 21}]
    a[n_] := a[n] = Sum[(-2)^(k - 1) k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]
    Join[{1}, Table[(-2)^(n - 1) n! Hypergeometric1F1[1 - n, 2, 1/2], {n, 21}]]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(x/(1+2*x)))) \\ G. C. Greubel, Feb 07 2019
    
  • Sage
    m = 30; T = taylor(exp(x/(1+2*x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 07 2019

Formula

E.g.f.: Product_{k>=1} exp((-2)^(k-1)*x^k).
a(n) = Sum_{k=0..n} (-2)^(n-k)*binomial(n-1,k-1)*n!/k!.
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^(k-1)*k!*binomial(n-1,k-1)*a(n-k).

A322218 E.g.f.: C(x,q) = 1 + Integral S(x,q) * C(q*x,q) dx, such that C(x,q)^2 - S(x,q)^2 = 1, where C(x,q) = Sum_{n>=0} sum_{k=0..n*(n-1)/2} T(n,k)*x^n*y^k/n!, as an irregular triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 4, 1, 20, 16, 24, 1, 56, 336, 288, 384, 128, 192, 1, 120, 2352, 6448, 12736, 5888, 10176, 5760, 3840, 1280, 1920, 1, 220, 10032, 93280, 214016, 472704, 385472, 431616, 294912, 341504, 141056, 164352, 69120, 46080, 15360, 23040, 1, 364, 32032, 740168, 4072640, 11702912, 18676672, 30112640, 23848704, 27599616, 17884032, 20958208, 13595136, 11074560, 5992448, 5945856, 2673664, 2300928, 967680, 645120, 215040, 322560, 1, 560, 84448, 3952832, 53301248, 230161152, 738249344, 1166436352, 1970874368, 2196244480, 2459786240, 1804101632, 2061498368, 1537437696, 1437724672, 989968384, 921092096, 487923712, 499621888, 282034176, 211599360, 117383168, 108036096, 42778624, 36814848, 15482880, 10321920, 3440640, 5160960
Offset: 0

Views

Author

Paul D. Hanna, Dec 16 2018

Keywords

Comments

Compare to Jacobi's elliptic function cn(x,k) = 1 - Integral sn(x,k)*dn(x,k) dx such that cn(x,k)^2 + sn(x,k)^2 = 1 and dn(x,k)^2 + k^2*sn(x,k)^2 = 1.
Right border equals A002866.
Row sums equal the secant numbers (A000364).
Last n terms in row n of this triangle and of triangle A322219 are equal for n>0.

Examples

			E.g.f. C(x,q) = Sum_{n>=0} sum_{k=0..n*(n-1)/2} T(n,k) * x^(2*n)*q^(2*k)/(2*n)! starts
C(x,q) = 1 + x^2/2! + (4*q^2 + 1)*x^4/4! + (24*q^6 + 16*q^4 + 20*q^2 + 1)*x^6/6! + (192*q^12 + 128*q^10 + 384*q^8 + 288*q^6 + 336*q^4 + 56*q^2 + 1)*x^8/8! + (1920*q^20 + 1280*q^18 + 3840*q^16 + 5760*q^14 + 10176*q^12 + 5888*q^10 + 12736*q^8 + 6448*q^6 + 2352*q^4 + 120*q^2 + 1)*x^10/10! + (23040*q^30 + 15360*q^28 + 46080*q^26 + 69120*q^24 + 164352*q^22 + 141056*q^20 + 341504*q^18 + 294912*q^16 + 431616*q^14 + 385472*q^12 + 472704*q^10 + 214016*q^8 + 93280*q^6 + 10032*q^4 + 220*q^2 + 1)*x^12/12! + ...
such that C(x,q) = cosh( Integral C(q*x,q) dx ).
This irregular triangle of coefficients T(n,k) of x^(2*n)*q^(2*k)/(2*n)! in C(x,q) begins:
1;
1;
1, 4;
1, 20, 16, 24;
1, 56, 336, 288, 384, 128, 192;
1, 120, 2352, 6448, 12736, 5888, 10176, 5760, 3840, 1280, 1920;
1, 220, 10032, 93280, 214016, 472704, 385472, 431616, 294912, 341504, 141056, 164352, 69120, 46080, 15360, 23040;
1, 364, 32032, 740168, 4072640, 11702912, 18676672, 30112640, 23848704, 27599616, 17884032, 20958208, 13595136, 11074560, 5992448, 5945856, 2673664, 2300928, 967680, 645120, 215040, 322560;
1, 560, 84448, 3952832, 53301248, 230161152, 738249344, 1166436352, 1970874368, 2196244480, 2459786240, 1804101632, 2061498368, 1537437696, 1437724672, 989968384, 921092096, 487923712, 499621888, 282034176, 211599360, 117383168, 108036096, 42778624, 36814848, 15482880, 10321920, 3440640, 5160960; ...
RELATED SERIES.
S(x,q) = x + (q^2 + 1)*x^3/3! + (4*q^6 + q^4 + 10*q^2 + 1)*x^5/5! + (24*q^12 + 16*q^10 + 20*q^8 + 85*q^6 + 91*q^4 + 35*q^2 + 1)*x^7/7! + (192*q^20 + 128*q^18 + 384*q^16 + 288*q^14 + 1200*q^12 + 632*q^10 + 2737*q^8 + 1324*q^6 + 966*q^4 + 84*q^2 + 1)*x^9/9! + (1920*q^30 + 1280*q^28 + 3840*q^26 + 5760*q^24 + 10176*q^22 + 16448*q^20 + 19776*q^18 + 27568*q^16 + 49872*q^14 + 69816*q^12 + 64329*q^10 + 50941*q^8 + 26818*q^6 + 5082*q^4 + 165*q^2 + 1)*x^11/11! +  ...
where C(x,q)^2 - S(x,q)^2 = 1.
		

Crossrefs

Cf. A322219 (S(x,q)), A000364 (row sums), A193544.

Programs

  • Mathematica
    rows = 8; m = 2 rows; s[x_, ] = x; c[, ] = 1; Do[s[x, q_] = Integrate[c[x, q] c[q x, q] + O[x]^m // Normal, x]; c[x_, q_] = 1 + Integrate[s[x, q] c[q x, q] + O[x]^m // Normal, x], {m}];
    CoefficientList[#, q^2]& /@ (CoefficientList[c[x, q], x] Range[0, m]!) // DeleteCases[#, {}]& // Flatten (* Jean-François Alcover, Dec 17 2018 *)
  • PARI
    {T(n,k) = my(S=x,C=1); for(i=1,2*n,
    S = intformal(C*subst(C,x,q*x) +O(x^(2*n+1)));
    C = 1 + intformal(S*subst(C,x,q*x)));
    (2*n)!*polcoeff( polcoeff(C,2*n,x),2*k,q)}
    for(n=0,10, for(k=0,n*(n-1)/2, print1( T(n,k),", "));print(""))

Formula

E.g.f. C(x,q) and related series S(x,q) satisfy:
(1) C(x,q)^2 - S(x,q)^2 = 1.
(2) C(x,q) = 1 + Integral S(x,q) * C(q*x,q) dx.
(3) S(x,q) = Integral C(x,q) * C(q*x,q) dx.
(4a) C(x,q) + S(x,q) = exp( Integral C(q*x,q) dx ).
(4b) C(x,q) = cosh( Integral C(q*x,q) dx ).
(4c) S(x,q) = sinh( Integral C(q*x,q) dx ).
(5) C(q*x,q) = 1 + q * Integral S(q*x,q) * C(q^2*x,q) dx.
(6) S(q*x,q) = q * Integral C(q*x,q) * C(q^2*x,q) dx.
(7a) C(q*x,q) + S(q*x,q) = exp( q * Integral C(q^2*x,q) dx ).
(7b) C(q*x,q) = cosh( q * Integral C(q^2*x,q) dx ).
(7c) S(q*x,q) = sinh( q * Integral C(q^2*x,q) dx ).
PARTICULAR ARGUMENTS.
C(x,q=0) = cosh(x).
C(x,q=1) = 1/cos(x).
C(x,q=i) = cl(i*x), where cl(x) is the cosine lemniscate function (A159600).
FORMULAS FOR TERMS.
T(n, n*(n-1)/2) = 2^(n-1)*n! for n >= 1.
T(n, n*(n-1)/2 - k) = A322219(n, n*(n+1)/2 - k) for k = 0..n-1, n > 0.
Sum_{k=0..n*(n-1)/2} T(n,k) = A000364(n) for n >= 0.
Sum_{k=0..n*(n-1)/2} T(n,k)*(-1)^k = A193544(2*n+1) for n >= 0.

A322219 E.g.f.: S(x,q) = Integral C(x,q) * C(q*x,q) dx, such that C(x,q)^2 - S(x,q)^2 = 1, where S(x,q) = Sum_{n>=0} sum_{k=0..n*(n+1)/2} T(n,k)*x^n*y^k/n!, as an irregular triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 4, 1, 35, 91, 85, 20, 16, 24, 1, 84, 966, 1324, 2737, 632, 1200, 288, 384, 128, 192, 1, 165, 5082, 26818, 50941, 64329, 69816, 49872, 27568, 19776, 16448, 10176, 5760, 3840, 1280, 1920, 1, 286, 18447, 279136, 954239, 2550054, 2455233, 4013788, 2929104, 3264864, 1176640, 1815552, 834752, 731136, 394752, 491264, 141056, 164352, 69120, 46080, 15360, 23040, 1, 455, 53053, 1780207, 15627183, 51699869, 128611679, 187372653, 213804652, 257006976, 245800968, 195109120, 161177792, 123750592, 83792000, 69316224, 52893696, 35140992, 28215808, 18433536, 12687360, 8411648, 5945856, 2673664, 2300928, 967680, 645120, 215040, 322560
Offset: 0

Views

Author

Paul D. Hanna, Dec 16 2018

Keywords

Comments

Compare to Jacobi's elliptic function sn(x,k) = Integral cn(x,k)*dn(x,k) dx such that cn(x,k)^2 + sn(x,k)^2 = 1 and dn(x,k)^2 + k^2*sn(x,k)^2 = 1.
Right border equals A002866.
Row sums equal the tangent numbers (A000182).
Last n terms in row n of this triangle and of triangle A322218 are equal for n>0.

Examples

			E.g.f. S(x,q) = Sum_{n>=0} sum_{k=0..n*(n+1)/2} T(n,k)*x^(2*n+1)*q^(2*k)/(2*n+1)! starts
S(x,q) = x + (q^2 + 1)*x^3/3! + (4*q^6 + q^4 + 10*q^2 + 1)*x^5/5! + (24*q^12 + 16*q^10 + 20*q^8 + 85*q^6 + 91*q^4 + 35*q^2 + 1)*x^7/7! + (192*q^20 + 128*q^18 + 384*q^16 + 288*q^14 + 1200*q^12 + 632*q^10 + 2737*q^8 + 1324*q^6 + 966*q^4 + 84*q^2 + 1)*x^9/9! + (1920*q^30 + 1280*q^28 + 3840*q^26 + 5760*q^24 + 10176*q^22 + 16448*q^20 + 19776*q^18 + 27568*q^16 + 49872*q^14 + 69816*q^12 + 64329*q^10 + 50941*q^8 + 26818*q^6 + 5082*q^4 + 165*q^2 + 1)*x^11/11! + ...
such that S(x,q) = sinh( Integral C(q*x,q) dx ) and C(x,q)^2 = 1 + S(x,q)^2.
This irregular triangle of coefficients T(n,k) of x^(2*n+1)*q^(2*k)/(2*n+1)! in S(x,q) begins:
1;
1, 1;
1, 10, 1, 4;
1, 35, 91, 85, 20, 16, 24;
1, 84, 966, 1324, 2737, 632, 1200, 288, 384, 128, 192;
1, 165, 5082, 26818, 50941, 64329, 69816, 49872, 27568, 19776, 16448, 10176, 5760, 3840, 1280, 1920;
1, 286, 18447, 279136, 954239, 2550054, 2455233, 4013788, 2929104, 3264864, 1176640, 1815552, 834752, 731136, 394752, 491264, 141056, 164352, 69120, 46080, 15360, 23040;
1, 455, 53053, 1780207, 15627183, 51699869, 128611679, 187372653, 213804652, 257006976, 245800968, 195109120, 161177792, 123750592, 83792000, 69316224, 52893696, 35140992, 28215808, 18433536, 12687360, 8411648, 5945856, 2673664, 2300928, 967680, 645120, 215040, 322560;
1, 680, 129948, 8212360, 163115238, 1001312104, 3705217660, 7815443320, 15434182497, 17298854576, 23429393056, 21144463040, 25624143104, 18454639872, 18756800128, 12036914176, 12076688384, 7122865152, 7609525248, 4420732928, 4042876928, 2553473024, 2465701888, 1353586688, 1234018304, 619528192, 587358208, 311279616, 255467520, 117383168, 108036096, 42778624, 36814848, 15482880, 10321920, 3440640, 5160960; ...
RELATED SERIES.
C(x,q) = 1 + x^2/2! + (4*q^2 + 1)*x^4/4! + (24*q^6 + 16*q^4 + 20*q^2 + 1)*x^6/6! + (192*q^12 + 128*q^10 + 384*q^8 + 288*q^6 + 336*q^4 + 56*q^2 + 1)*x^8/8! + (1920*q^20 + 1280*q^18 + 3840*q^16 + 5760*q^14 + 10176*q^12 + 5888*q^10 + 12736*q^8 + 6448*q^6 + 2352*q^4 + 120*q^2 + 1)*x^10/10! + (23040*q^30 + 15360*q^28 + 46080*q^26 + 69120*q^24 + 164352*q^22 + 141056*q^20 + 341504*q^18 + 294912*q^16 + 431616*q^14 + 385472*q^12 + 472704*q^10 + 214016*q^8 + 93280*q^6 + 10032*q^4 + 220*q^2 + 1)*x^12/12! + ...
such that C(x,q) = cosh( Integral C(q*x,q) dx ).
		

Crossrefs

Cf. A322218 (C(x,q)), A000182 (row sums), A104203, A002866.

Programs

  • Mathematica
    rows = 8; m = 2 rows; s[x_, ] = x; c[, ] = 1; Do[s[x, q_] = Integrate[c[x, q] c[q x, q] + O[x]^m // Normal, x]; c[x_, q_] = 1 + Integrate[s[x, q] c[q x, q] + O[x]^m // Normal, x], {m}];
    CoefficientList[#, q^2]& /@ (CoefficientList[s[x, q], x] Range[0, m-1]!) // DeleteCases[#, {}]& // Flatten (* Jean-François Alcover, Dec 17 2018 *)
  • PARI
    {T(n,k) = my(S=x,C=1); for(i=1,2*n,
    S = intformal(C*subst(C,x,q*x) +O(x^(2*n+1)));
    C = 1 + intformal(S*subst(C,x,q*x)));
    (2*n+1)!*polcoeff( polcoeff(S,2*n+1,x),2*k,q)}
    for(n=0,10, for(k=0,n*(n+1)/2, print1( T(n,k),", "));print(""))

Formula

E.g.f. S(x,q) and related series C(x,q) satisfy:
(1) C(x,q)^2 - S(x,q)^2 = 1.
(2) C(x,q) = 1 + Integral S(x,q) * C(q*x,q) dx.
(3) S(x,q) = Integral C(x,q) * C(q*x,q) dx.
(4a) C(x,q) + S(x,q) = exp( Integral C(q*x,q) dx ).
(4b) C(x,q) = cosh( Integral C(q*x,q) dx ).
(4c) S(x,q) = sinh( Integral C(q*x,q) dx ).
(5) C(q*x,q) = 1 + q * Integral S(q*x,q) * C(q^2*x,q) dx.
(6) S(q*x,q) = q * Integral C(q*x,q) * C(q^2*x,q) dx.
(7a) C(q*x,q) + S(q*x,q) = exp( q * Integral C(q^2*x,q) dx ).
(7b) C(q*x,q) = cosh( q * Integral C(q^2*x,q) dx ).
(7c) S(q*x,q) = sinh( q * Integral C(q^2*x,q) dx ).
PARTICULAR ARGUMENTS.
S(x,q=0) = sinh(x).
S(x,q=1) = tan(x).
S(x,q=i) = -i * sl(i*x), where sl(x) is the sine lemniscate function (A104203).
FORMULAS FOR TERMS.
T(n, n*(n+1)/2) = 2^(n-1)*n! for n >= 1.
T(n, n*(n+1)/2 - k) = A322218(n, n*(n-1)/2 - k) for k = 0..n-1, n > 0.
Sum_{k=0..n*(n+1)/2} T(n,k) = A000182(n+1) for n >= 0.
Sum_{k=0..n*(n+1)/2} T(n,k)*(-1)^k = A104203(2*n+1) for n >= 0.

A332257 E.g.f.: (1 - sinh(x)) / (1 - 2*sinh(x)).

Original entry on oeis.org

1, 1, 4, 25, 208, 2161, 26944, 391945, 6515968, 121866721, 2532496384, 57890223865, 1443611004928, 38999338931281, 1134616226381824, 35367467110007785, 1175946733416153088, 41543231955279099841, 1553948045857778827264, 61355543097139813855705
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[(1 - Sinh[x])/(1 - 2 Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    seq(n)={Vec(serlaplace((1 - sinh(x + O(x*x^n))) / (1 - 2*sinh(x + O(x*x^n)))))} \\ Andrew Howroyd, Feb 08 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A006154(k) * a(n-k).
a(n) ~ n! / (2*sqrt(5) * log((1 + sqrt(5))/2)^(n+1)). - Vaclav Kotesovec, Feb 08 2020
Previous Showing 41-50 of 78 results. Next