cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 73 results. Next

A365593 Number of n X n Boolean relation matrices such that every block of its Frobenius normal form is either a 0 block or a 1 block.

Original entry on oeis.org

1, 2, 13, 219, 9322, 982243, 249233239, 148346645212, 202688186994599, 624913864623500599, 4289324010827093793808, 64841661094150427710360745, 2140002760057211517052090865983, 153082134018816602622335941790247946, 23590554099141037133024176892280338280237
Offset: 0

Views

Author

Geoffrey Critzer, Sep 10 2023

Keywords

Comments

A 1(0) block is such that every entry in the block is 1(0). If a Boolean relation matrix R is limit dominating then it must be that every block of R is either a 0 block or a 1 block. See Theorem 1.2 in Gregory, Kirkland, and Pullman.
Conjecture: lim_n->inf a(n)/(A003024(n)*2^n) = 1. In other words, almost all of the relations counted by this sequence have n strongly connected components. - Geoffrey Critzer, Sep 30 2023

Crossrefs

Programs

  • Mathematica
    nn = 12; d[x_] :=Total[Cases[Import["https://oeis.org/A003024/b003024.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 41}]];
    Range[0, nn]! CoefficientList[Series[d[Exp[x] - 1 + x], {x, 0, nn}],x]

Formula

E.g.f.: D(exp(x)-1+x) where D(x) is the e.g.f. for A003024.

A087613 Number of labeled acyclic preferences/voting outcomes, indifference and undecidedness/incompleteness permitted (Social Choice Theory).

Original entry on oeis.org

1, 4, 62, 3608, 765664, 577696816
Offset: 1

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Sep 12 2003

Keywords

Crossrefs

Cf. A087614 for the unlabeled analog, A003024, A087615.

A087615 Number of labeled cyclic preferences/voting outcomes, indifference and undecidedness/incompleteness permitted (Social Choice Theory).

Original entry on oeis.org

0, 0, 2, 488, 282912, 496045008
Offset: 1

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Sep 12 2003

Keywords

Crossrefs

Cf. A087616 for the unlabeled analog, A003024, A087613, A053763.

Formula

a(n) = A053763(n) - A087613(n).

A098148 Number of real (0,1) n X n matrices such that some eigenvalues are strictly complex.

Original entry on oeis.org

0, 0, 52, 22196, 21005094
Offset: 1

Views

Author

Hugo Pfoertner, Sep 07 2004

Keywords

Examples

			The 3 X 3 matrix ((0,1,0),(0,0,1),(1,1,1)) has real eigenvalue 1.83929 and the complex pair -0.41964+-0.60629*i. There are 12 (0,1) 3 X 3 matrices with these eigenvalues. There are 6 groups of 6 matrices having eigenvalues (1.3472,-0.66236+-0.56228*i), (1.46557,-0.23279+-0.79255*i),..., (2.32472,0.33764+-0.56228*i). Two matrices (e.g. ((0,0,1),(1,0,0),(0,1,0)) ) have eigenvalues (1,-0.5+-0.5*sqrt(3)*i). Two matrices (e.g. ((1,1,0),(0,1,1),(1,0,1)) ) have eigenvalues (2,0.5+-0.5*sqrt(3)*i). Total: 12+6*6+2+2=52=a(3).
		

Crossrefs

Cf. other counts for (0, 1) matrices: A003024 (positive eigenvalues), A055165 (nonsingular), A085656 (positive definite), A086510 (nonnegative eigenvalues).

Programs

  • Mathematica
    a[n_] := Module[{M, iter, cnt=0}, M = Table[a[i, j], {i, 1, n}, {j, 1, n}]; iter = Thread[{Flatten[M], 0, 1}]; Do[If[AnyTrue[Eigenvalues[M], Im[#] != 0&], cnt++], Evaluate[Sequence @@ iter]]; cnt];
    Do[Print[n, " ", a[n]], {n, 1, 4}] (* Jean-François Alcover, Dec 09 2018 *)

Extensions

a(5) corrected by Hugo Pfoertner, Sep 26 2017

A188455 G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1 + 2^n*x)^(2n+1).

Original entry on oeis.org

1, 1, 5, 77, 3191, 332481, 83495679, 49089025473, 66142622730623, 200954040909283841, 1359156203343916471295, 20253823024219712679748609, 659335186924510858208484730879, 46554554840488755704034417937268737
Offset: 0

Views

Author

Paul D. Hanna, Mar 31 2011

Keywords

Comments

G.f. satisfies a variant of an identity of the Catalan numbers (A000108):
1 = Sum_{n>=0} A000108(n)*x^n/(1 + x)^(2n+1).
Also, g.f. satisfies a variant of an identity involving A003024:
1 = Sum_{n>=0} A003024(n)*x^n/(1 + 2^n*x)^(n+1),
where A003024(n) is the number of acyclic digraphs with n labeled nodes.

Examples

			G.f.: 1 = 1/(1+x) + x/(1+2*x)^3 + 5*x^2/(1+4*x)^5 + 77*x^3/(1+8*x)^7 + 3191*x^4/(1+16*x)^9 + 332481*x^5/(1+32*x)^11 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+2^k*x+x*O(x^n))^(2*k+1)), n)}

A243014 Number of acyclic digraphs (DAGS) on n labeled nodes, where the indegree and outdegree of each node is at most 1.

Original entry on oeis.org

1, 1, 3, 13, 61, 321, 1951, 13693, 109593, 986401, 9864091, 108505101, 1302061333, 16926797473, 236975164791, 3554627472061, 56874039553201, 966858672404673, 17403456103284403, 330665665962403981, 6613313319248079981, 138879579704209680001
Offset: 0

Views

Author

Shuaib Ahmed S, May 29 2014

Keywords

Comments

a(n) is the number of acyclic digraphs (DAGS) on n labeled nodes, where the indegree and outdegree of each node is at most 1. For example, with vertex set {A,B,C} the possible ways are: one 3-component graph {A,B,C}, six 2-component graph {{A->B,C},{B->A,C},{A->C,B},{C->A,B},{C->B,A},{B->C,A}}, and six 1-component graph {{A->B->C},{B->A->C},{A->C->B},{C->A->B},{C->B->A},{B->C->A}}.

Crossrefs

Programs

  • MATLAB
    @(n)(factorial(n)*sum(1./(factorial(0:n-2)))+1)

Formula

a(n) = (n!*Sum(1/k!))+1, k=0..n-2.
a(n) = (n*(a(n-1)+n-2))+1, for n>1, a(1)=1.
a(n) = A038154(n)+1.
E.g.f.: exp(x)*(x^2-x+1)/(1-x). - Alois P. Heinz, Aug 21 2017

Extensions

a(0)=1 prepended, one term corrected, more terms added by Alois P. Heinz, Aug 21 2017

A307049 Irregular table read by rows: The number of acyclic digraphs on n labeled nodes with k descents.

Original entry on oeis.org

1, 2, 1, 8, 11, 5, 1, 64, 161, 167, 102, 39, 9, 1, 1024, 3927, 6698, 7185, 5477, 3107, 1329, 423, 96, 14, 1, 32768, 172665, 419364, 656733, 757939, 686425, 504084, 305207, 153333, 63789, 21752, 5959, 1267, 197, 20, 1, 2097152, 14208231, 45263175, 94040848, 145990526, 181444276, 187742937, 165596535
Offset: 1

Views

Author

R. J. Mathar, Mar 21 2019

Keywords

Examples

			     1;
     2    1;
     8   11    5    1;
    64  161  167  102   39    9    1;
  1024 3927 6698 7185 5477 3107 1329 423 96 14 1;
...
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041. See Table 3

Crossrefs

Cf. A003024 (row sums), A006125, A057273, A339590, A339807.

A361560 Number of labeled digraphs on [n] all of whose strongly connected components are complete digraphs.

Original entry on oeis.org

1, 1, 4, 47, 1471, 115042, 21591817, 9455689609, 9464951556046, 21316993121024757, 106689322228222150243, 1174731578884501228621956, 28221161668500867009724237123, 1468937207982284446757761131062629, 164682046577167683717133576752582349216, 39562388056404531283767850863430043742371123
Offset: 0

Views

Author

Geoffrey Critzer, Mar 15 2023

Keywords

Crossrefs

Cf. A011266 (all strong components are cycles), A361527, A003024 (all strong components are singletons).

Programs

  • Mathematica
    nn = 15; B[n_] := n! 2^Binomial[n, 2]; a[x_] := Exp[x] - 1; Table[B[n], {n, 0, nn}] CoefficientList[Series[1/Normal[Series[Exp[-(Exp[x] - 1)], {x, 0, nn}]] /.
        Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}], {z, 0, nn}], z]

A366194 Number of limit dominating binary relations on [n].

Original entry on oeis.org

1, 2, 13, 177, 4486
Offset: 0

Views

Author

Geoffrey Critzer, Oct 03 2023

Keywords

Comments

A relation R is limit dominating iff R converges to a single limit L (A365534) and R contains L. See Gregory, Kirkland, and Pullman.
A convergent relation R is limit dominating iff the following implication holds for all x,y in [n]. If there is a cyclic traverse from x to y in G(R) then (x,y) is in R, where G(R) is the directed graph with loops associated to R.
A relation R is limit dominating iff it converges to L, the biggest dense relation (A355730) contained in R. In which case L is the intersection of R^i for all i>=1. - Geoffrey Critzer, Dec 03 2023

Examples

			Every idempotent relation (A121337) is limit dominating.
Every transitive relation (A006905) is limit dominating.
Every nilpotent relation (A003024) is limit dominating.
		

Crossrefs

A367052 Number of n X n matrices with elements {0, 1} whose characteristic polynomial has non-leading coefficients in {-1,0}.

Original entry on oeis.org

1, 2, 12, 195, 7971, 754610, 157474968, 70513430631
Offset: 0

Views

Author

Peter Kagey, Nov 03 2023

Keywords

Comments

All of these matrices have the property that for m >= n, A^m = A^{m-i_1} + A^{m-i_2} + ... + A^{m-i_k} for some positive increasing sequence 0 < i_1 < i_2 < ... < i_k <= n.
Because A003024(n) gives the number of such matrices with characteristic polynomial equal to x^n, a(n) >= A003024(n).
Conjecture: The number of matrices with characteristic polynomial x^n - x^(n-1) is exactly n*A003024(n). (If so, (n+1)*A003024(n) is a lower bound for this sequence.)

Examples

			For n = 3, there are a(3) = 195 3 X 3 matrices whose non-leading coefficients are in {-1,0}, eight of which are shown below.
  [0 0 1]  [0 0 1]  [0 0 0]  [0 1 0]
  [0 0 0]  [1 0 0]  [1 0 1]  [1 0 1]
  [0 1 0], [0 1 0], [1 1 0], [1 0 0],
.
  [1 0 0]  [1 1 0]  [1 1 0]      [1 1 0]
  [1 0 0]  [0 0 1]  [1 0 0]      [1 0 1]
  [1 1 0], [1 0 0], [1 1 0], and [1 0 0].
These have characteristic polynomials x^3, x^3 - 1, x^3 - x, x^3 - x - 1, x^3 - x^2, x^3 - x^2 - 1, x^3 - x^2 - x, and x^3 - x^2 - x - 1 respectively.
There are 25, 2, 21, 6, 75, 6, 48, and 12 matrices with each of these characteristic polynomials respectively.
		

Crossrefs

Programs

  • Mathematica
    IsValid[matrix_, n_] := AllTrue[
      CoefficientList[(-1)^n*CharacteristicPolynomial[matrix, x], x][[;;-2]],
      -1 <= # <= 0 &
    ]
    a[0] := 1
    a[n_] := Length[Select[Tuples[{0, 1}, {n, n}], IsValid[#, n] &]]
  • Python
    from itertools import product
    from sympy import Matrix
    def A367052(n): return sum(1 for p in product((0,1),repeat=n**2) if all(d==0 or d==-1 for d in Matrix(n,n,p).charpoly().as_list()[1:])) if n else 1 # Chai Wah Wu, Nov 05 2023

Extensions

a(5)-a(6), using the Faddeev-LeVerrier algorithm, from Martin Ehrenstein, Nov 06 2023
a(7), using AVX2 Intrinsics, from Martin Ehrenstein, Nov 18 2023
Previous Showing 41-50 of 73 results. Next