A186081
Number of binary relations R on {1,2,...,n} such that the transitive closure of R is the trivial relation.
Original entry on oeis.org
1, 1, 4, 144, 25696, 18082560, 47025585664, 450955726792704, 16260917603754029056, 2253010420928564535951360, 1219004114245442237742488879104, 2601909995433633381004133738019815424, 22040854392120341022554569447470527813779456
Offset: 0
a(2)=4 because there are four relations on {1,2} whose transitive closure is {(1,1), (1,2), (2,1), (2,2)}. They are the three nontransitive relations,{(1,2), (2,1)}, {(1,2), (2,1), (2,2)}, {(1,1), (1,2), (2,1)} and the trivial relation itself.
-
Needs["Combinatorica`"];
f[list_] := Apply[Plus, Table[MatrixPower[list,n], {n,1,Length[list]}]];
Join[{1}, Table[Length[Select[Map[Flatten, Map[f, Tuples[Strings[{0, 1}, n], n]]], FreeQ[#, 0] &]], {n, 1, 4}]]
(* Second program: *)
a[ n_] := If[ n < 1, Boole[n == 0], With[{triv = matnk[n, 2^n^2 - 1]}, Sum[ Boole[triv === transitiveClosure[ matnk[n, k]]], {k, 0, 2^n^2 - 1}]]]; matnk[n_, k_] := Partition[ IntegerDigits[ k, 2, n^2], n]; transitiveClosure[x_] := FixedPoint[ Sign@(# + Dot[#, x]) &, x, Length@x]; (* Michael Somos, Mar 08 2012 *)
A361591
Triangle read by rows: T(n,k) is the number of weakly connected simple digraphs on n labeled nodes with k strongly connected components.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 18, 18, 18, 0, 1606, 1098, 684, 446, 0, 565080, 263580, 116370, 55620, 26430, 0, 734774776, 225806940, 68822910, 24578010, 9729090, 3596762, 0, 3523091615568, 680637057912, 136498491360, 34626926250, 10819771830, 3694824126, 1111506858
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 18, 18, 18;
0, 1606, 1098, 684, 446;
0, 565080, 263580, 116370, 55620, 26430;
0, 734774776, 225806940, 68822910, 24578010, 9729090, 3596762;
...
-
\\ Uses functions defined in A361455.
T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(1 + log(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e))))))))))]}
{ my(A=T(6)); for(i=1, #A, print(A[i])) }
A366350
Number of labeled directed graphs on [n] with self loops allowed such that the following implication holds for all x,y in [n]. If x and y are in distinct strongly connected components then there is a directed edge from x to y or from y to x.
Original entry on oeis.org
1, 2, 12, 240, 29056, 18656960, 47473519744, 452285200546816, 16275391021965395968, 2253596336074652670148608, 1219094258112479334941371285504, 2601963635581642923807860961645363200
Offset: 0
-
nn = 11; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[x_] := Total[Prepend[strong Table[x^i/i!, {i, 1, 58}], 1]];Table[n!, {n, 0, nn}] CoefficientList[Series[1/(1 - (s[x + x] - 1)), {x, 0, nn}], x]
A054944
Number of strongly connected labeled digraphs on n nodes with an even number of edges.
Original entry on oeis.org
1, 1, 10, 806, 282552, 367387448, 1761545808144, 31759604694834608, 2200205489188051324800, 595216852658907342647881088, 635231932478914399659212340198144, 2690533983413127566229805840755699623168, 45382894419701545228622064475653706686181248000, 3054532231410772852023213016232868881612380320979954688
Offset: 1
-
b[n_] := b[n] = If[n == 1, 1, 2^(n*(n - 1)) - Sum[Binomial[n, j]*2^((n - 1)*(n - j))*b[j], {j, 1, n - 1}]];
c[1] = 1; c[n_] := c[n] = b[n] + Sum[Binomial[n - 1, j - 1]*b[n - j]*c[j], {j, 1, n - 1}];
a[n_] := (c[n] + (n - 1)!)/2;
Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Aug 30 2019, after Vaclav Kotesovec in A003030 *)
A054945
Number of strongly connected labeled digraphs on n nodes with an odd number of edges.
Original entry on oeis.org
0, 0, 8, 800, 282528, 367387328, 1761545807424, 31759604694829568, 2200205489188051284480, 595216852658907342647518208, 635231932478914399659212336569344, 2690533983413127566229805840755659706368, 45382894419701545228622064475653706685702246400, 3054532231410772852023213016232868881612380314752933888
Offset: 1
-
b[n_] := b[n] = If[n == 1, 1, 2^(n*(n - 1)) - Sum[Binomial[n, j]*2^((n - 1)*(n - j))*b[j], {j, 1, n - 1}]];
c[1] = 1; c[n_] := c[n] = b[n] + Sum[Binomial[n - 1, j - 1]*b[n - j]*c[j], {j, 1, n - 1}];
a[n_] := (c[n] - (n - 1)!)/2;
Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Aug 30 2019, after Vaclav Kotesovec in A003030 *)
A362013
Triangular array read by rows. T(n,k) is the number of labeled directed graphs on [n] with exactly k strongly connected components of size 1 with outdegree zero, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 27, 27, 9, 1, 2401, 1372, 294, 28, 1, 759375, 253125, 33750, 2250, 75, 1, 887503681, 171774906, 13852815, 595820, 14415, 186, 1, 3938980639167, 437664515463, 20841167403, 551353635, 8751645, 83349, 441, 1, 67675234241018881, 4263006881324024, 117484441611292, 1850148686792, 18210124870, 114709448, 451612, 1016, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
1, 2, 1;
27, 27, 9, 1;
2401, 1372, 294, 28, 1;
759375, 253125, 33750, 2250, 75, 1;
...
-
nn = 6; B[n_] := n! 2^Binomial[n, 2] ; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /.Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}]; Table[ Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-s[z]]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}]
A362226
Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k isolated strongly connected components, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 2, 1, 1, 36, 24, 3, 1, 2240, 1762, 87, 6, 1, 462720, 577000, 8630, 215, 10, 1, 332613632, 737645836, 3455820, 26085, 435, 15, 1, 867410804736, 3525456796232, 5166693532, 12154030, 61775, 777, 21, 1, 8503156728135680, 63526200994115056, 28215577119548, 20705805988, 32624585, 125776, 1274, 28, 1
Offset: 0
1;
0, 1;
2, 1, 1;
36, 24, 3, 1;
2240, 1762, 87, 6, 1;
462720, 577000, 8630, 215, 10, 1;
...
-
nn = 8; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
d[z_] := Sum[2^(n (n - 1)) z^n/n!, {n, 0, nn}]; Table[Take[(Table[n!, {n, 0, nn}] CoefficientList[ Series[Exp[(u - 1) s[z]] d[z], {z, 0, nn}], {z, u}])[[i]],
i], {i, 1, nn + 1}] // Grid
A363834
Number of labeled digraphs (with self loops allowed) on [n] such that every strongly connected component of size at least 2 contains a vertex with a self loop.
Original entry on oeis.org
1, 2, 15, 452, 58023, 31083662, 66296957895, 554842541248592, 18340342731323665263, 2411916363098805776251322, 1266238008719333748929247025455, 2657054767893996575723268008873476172, 22295054304671836968688374028608806896204023
Offset: 0
a(2) = 15 because there are 16 labeled digraphs with self loops on [2] and all of them are good except: [1->2,2->1].
-
nn = 12; B[n_] := 2^Binomial[n, 2] n!; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; sm[x_] := Total[Table[2^n - 1, {n, 1, Length[strong]}] strong Table[ x^i/i!, {i, 1, 58}]]; ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /.
Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(sm[x] + x)]], {x, 0, nn}], x]
A365325
Triangular array read by rows. T(n,k) is the number of labeled digraphs (with self loops allowed) on [n] containing exactly k primitive components, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 4, 9, 3, 51, 298, 138, 25, 1831, 40815, 17853, 4494, 543, 166930, 23752151, 7418420, 1861755, 325895, 29281, 36681301, 55427713806, 10701675348, 2105585760, 391017795, 53021223, 3781503
Offset: 0
Triangle begins
1;
1, 1;
4, 9, 3;
51, 298, 138, 25;
1831, 40815, 17853, 4494, 543;
...
-
nn = 6; B[n_] := 2^Binomial[n, 2] n!; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; primitive =
Select[Import["https://oeis.org/A070322/b070322.txt", "Table"],
Length@# == 2 &][[All, 2]]; pr[x_] := Total[primitive Table[x^i/i!, {i, 0, 6}]];ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i ->x^i/2^Binomial[i, 2], {i, 0, nn}];
Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[- (y (pr[x] - 1) + s[2 x] - (pr[x] - 1))]], {x,
0, nn}], {x, y}]] // Grid
A366396
Number of labeled directed graphs on [n] with self loops allowed such that the following implication holds for all x,y in [n]. If x and y are in distinct strongly connected components and y is reachable from x then there is a directed edge from x to y.
Original entry on oeis.org
1, 2, 16, 368, 34624, 19194752, 47730489856, 452968293106688, 16282682505688059904, 2253889950034687424110592, 1219139359408849690950674415616, 2601990460616856808147727573494857728, 22041041736721298233193355574294486210576384
Offset: 0
-
nn = 12; posets = Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
Length@# == 2 &][[All, 2]];p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]]; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[x_] := Total[Prepend[strong Table[x^i/i!, {i, 1, 58}], 1]];Table[n!, {n, 0, nn}] CoefficientList[Series[p[s[2 x] - 1], {x, 0, nn}], x]
Comments