cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 97 results. Next

A337208 Indices m of repunits R_m that are Colombian (or self) numbers.

Original entry on oeis.org

1, 4, 6, 17, 28, 39, 50, 61, 72, 83, 94, 109, 120, 131, 142, 153, 164, 175, 186, 197, 199, 210, 221, 232, 243, 254, 265, 276, 287, 298, 300, 311, 322, 333, 344, 355, 366, 377, 388, 399, 401, 412, 423, 434, 445, 456, 467, 478, 489, 500, 502, 513, 524, 535, 546, 557
Offset: 1

Views

Author

David A. Corneth, Aug 19 2020

Keywords

Crossrefs

Cf. A002275 (repunits), A003052 (Colombian (or self)), A004022 (repunit primes), A004023 (indices of repunit primes), complement of A337139.

Programs

  • PARI
    upto(n)= {my(res = List()); for(i = 1, n, if(is(i), listput(res, i); print1(i", "))); res}
    is(n) = {c = 10^n \ 9; is_A003052(c)}
    is_A003052(n)={for(i=1, min(n\2, 9*#digits(n)), sumdigits(n-i)==i && return); n} \\ from M. F. Hasler, Mar 20 2011

A377473 Distinct first differences of Colombian or self numbers (A377472), listed in the order they appear.

Original entry on oeis.org

2, 11, 15, 28, 41, 54, 67, 80, 93, 106, 119, 101, 118, 131, 144, 157, 170, 183, 196, 209, 24, 90, 204, 221, 234, 247, 260, 273, 286, 299, 35, 79, 294, 307, 324, 337, 350, 363, 376, 389, 46, 68, 384, 397, 410, 427, 440, 453, 466, 479, 57, 474, 487, 500
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2024

Keywords

Comments

See A377474 for the indices where these first differences appear for the first time.

Examples

			A377472(n) = 2 = a(1) for all n <= 4. Then, A377472(n) = 11 = a(2) up to n = 13.
Then again, A377472(14..23) = (2, 11, ..., 11) and similarly up to n = 94.
But A377472(103) = 15 = a(3). Then the previous pattern repeats, with A377472(n) = 2 for n = 112, 122, ..., 192, followed by A377472(n) = 15 at n = 201, 299, 397, ..., 887.
Then A377472(984) = 28 = a(4), and it goes on with A377472(n) = 2 at n = 992, 1002, ..., 1072, and so on, with A377472(n) = 28 at n = 1962, 2940, 3918, ..., 8808.
Then A377472(9785) = 41 = a(5), and the whole previous pattern repeats, with A377472(9881) = 15, then A377472(10762) = 28 etc.
At n = 97786, we find A377472(n) = 54 = a(6), and again the whole previous pattern repeats again 8 more times, each time separated by a 54, until we have, at n = 977787, A377472(n) = 67 = a(7). And so on.
		

Crossrefs

Cf. A003052 (Colombian numbers), A377472 (1st differences of Colombian numbers), A163139 (= A377472 - 1), A377423.

Programs

  • PARI
    A377473_upto(N=9, show=1)={my(o, c, d, L=List()); for(n=1+o=1, oo, is_A003052(n)||next; c++; if(!setsearch(L, d=n-o), show && printf("%d, ",[c,d]); listput(L,d); #L
    				

Formula

a(n) = A377423(n) + 1.

Extensions

Terms a(9) onward computed from A377423 by Max Alekseyev, Dec 31 2024

A382452 Number of self numbers <= 10^n.

Original entry on oeis.org

5, 13, 102, 983, 9784, 97786, 977787, 9777788, 97777789, 977777790, 9777777791
Offset: 1

Views

Author

Shyam Sunder Gupta, Mar 27 2025

Keywords

Crossrefs

Cf. A003052.

A036228 a(1) = 31; a(n+1) = a(n) + sum of decimal digits of a(n).

Original entry on oeis.org

31, 35, 43, 50, 55, 65, 76, 89, 106, 113, 118, 128, 139, 152, 160, 167, 181, 191, 202, 206, 214, 221, 226, 236, 247, 260, 268, 284, 298, 317, 328, 341, 349, 365, 379, 398, 418, 431, 439, 455, 469, 488, 508, 521, 529, 545, 559, 578, 598, 620, 628, 644, 658
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

Elements >= 214 can be found in A007618

References

  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.

Crossrefs

Programs

  • Mathematica
    NestList[#+Total[IntegerDigits[#]]&,31,60] (* Harvey P. Dale, Jan 30 2020 *)

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A163139 First differences of A163128.

Original entry on oeis.org

1, 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 10
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 21 2009

Keywords

Comments

First differences of self numbers, minus 1.

Examples

			a(6) = 24 - 14 = 10.
		

Crossrefs

Programs

  • Maple
    A007953 := proc(n) add(d,d=convert(n,base,10)) ; end:
    isA003052 := proc(n) for k from 1 to n do if k+A007953(k) = n then RETURN(false) ; fi; od: true; end:
    A003052 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA003052(a) then RETURN(a) ; fi; od: fi; end:
    for n from 1 to 100 do printf("%d,",A003052(n+1)-A003052(n)-1) ; od: # R. J. Mathar, Jul 31 2009

Formula

a(n) = A163128(n+1) - A163128(n) = A003052(n+1) - A003052(n) - 1.

Extensions

Missing 10's inserted by R. J. Mathar, Jul 31 2009

A171672 Numbers m with property that m^2 is not of form (k + sum of digits of k).

Original entry on oeis.org

1, 3, 8, 11, 20, 76, 83, 86, 94, 97, 104, 110, 133, 137, 166, 173, 176, 184, 187, 194, 223, 256, 263, 264, 266, 274, 275, 277, 284, 332, 353, 356, 364, 367, 396, 403, 407, 436, 443, 454, 457, 464, 504, 533, 535, 546, 587, 623, 624, 625, 634, 637, 644, 654, 673
Offset: 1

Views

Author

Zak Seidov, Dec 15 2009

Keywords

Crossrefs

Cf. A003052 (self or Colombian numbers), A171671 (m^2 are self numbers), A062028 (a(n) = n + sum of the digits of n), A171673 (n and n^2 are self numbers).

Programs

  • Mathematica
    nn=5*10^5; list=Table[n + Total[IntegerDigits[n]],{n,nn}]; Select[Sqrt[Complement[Range[nn],list]], IntegerQ[#] &] (* Jayanta Basu, May 06 2013 *)

Formula

a(n) = sqrt(A171671(n)).

Extensions

Changed the word "safe" in this entry to "self". - N. J. A. Sloane, Feb 26 2017

A230865 a(n) = n + (sum of digits in base-5 representation of n).

Original entry on oeis.org

0, 2, 4, 6, 8, 6, 8, 10, 12, 14, 12, 14, 16, 18, 20, 18, 20, 22, 24, 26, 24, 26, 28, 30, 32, 26, 28, 30, 32, 34, 32, 34, 36, 38, 40, 38, 40, 42, 44, 46, 44, 46, 48, 50, 52, 50, 52, 54, 56, 58, 52, 54, 56, 58, 60, 58, 60, 62, 64, 66, 64, 66, 68, 70, 72, 70, 72, 74, 76, 78, 76, 78, 80, 82, 84, 78, 80, 82, 84, 86, 84
Offset: 0

Views

Author

N. J. A. Sloane, Nov 05 2013

Keywords

Comments

The image of this sequence is the set of nonnegative even numbers (A005843). Joshi (1973) proved that the sequence of base-q self numbers (analogous to A003052) is the sequence of odd numbers (A005408) for all odd q. - Amiram Eldar, Nov 28 2020

References

  • V. S. Joshi, Ph.D. dissertation, Gujarat Univ., Ahmedabad (India), October, 1973.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    Table[n + Plus @@ IntegerDigits[n, 5], {n, 0, 100}] (* Amiram Eldar, Nov 28 2020 *)

Formula

a(n) = n + A053824(n). - Amiram Eldar, Nov 28 2020

A247104 Squarefree self-numbers.

Original entry on oeis.org

3, 5, 7, 31, 42, 53, 86, 97, 110, 143, 154, 165, 187, 209, 211, 222, 233, 255, 266, 277, 299, 310, 323, 334, 345, 367, 389, 411, 413, 435, 446, 457, 479, 501, 514, 547, 569, 591, 602, 613, 615, 626, 659, 670, 681, 703, 714, 727, 749, 771, 782, 793, 815, 817
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 18 2014

Keywords

Comments

Squarefree numbers not expressible as the sum of an integer and its digit sum;
intersection of A005117 and A003052.

Crossrefs

Cf. A005117, A003052, A008966, A062028, A006378 (subsequence), A249044.

Programs

  • Haskell
    a247104 n = a247104_list !! (n-1)
    a247104_list = filter ((== 1) . a008966) $ tail a003052_list
  • Mathematica
    nmax = 1000;
    Select[Complement[Range[nmax], Union[Table[n + Total[IntegerDigits[n]], {n, 1, nmax}]]], #>1 && SquareFreeQ[#]&] (* Jean-François Alcover, Jan 08 2020, after T. D. Noe in A003052 *)

Formula

A008966(a(n)) * (1 - A230093(a(n))) = 1.

A333858 Numbers that are both Colombian and Brazilian.

Original entry on oeis.org

7, 20, 31, 42, 64, 75, 86, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 244, 255, 266, 288, 299, 310, 312, 323, 334, 345, 356, 378, 400, 411, 413, 424, 435, 446, 468, 490, 501, 512, 514, 525, 536, 558, 580, 591, 602, 615, 626, 637, 648, 670, 681, 692
Offset: 1

Views

Author

Bernard Schott, Apr 08 2020

Keywords

Comments

121 is the only square of prime in this sequence.

Examples

			20 is a term because it is not of the form m + sum of digits of m for any m < 20, so 20 is Colombian and 20 = (22)_9, so 20 is also Brazilian.
		

Crossrefs

Intersection of A003052 and A125134.

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; n = 700; Select[Complement[Range[n], Union @ Table[Plus @@ IntegerDigits[k] + k, {k, 1, n}]], brazQ] (* Amiram Eldar, Apr 08 2020 after T. D. Noe at A125134 *)

A336985 Colombian numbers that are not Bogotá numbers.

Original entry on oeis.org

3, 5, 7, 20, 31, 53, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 233, 244, 266, 277, 288, 299, 310, 323, 334, 345, 356, 367, 389, 400, 411, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 514, 536, 547, 558, 569, 580, 591, 602, 613
Offset: 1

Views

Author

Bernard Schott, Aug 26 2020

Keywords

Comments

Equivalently, numbers m that are not of the form k + sum of digits of k for any k (A003052), and that are not of the form q * product of digits of q for any q (complement of A336826).
As repunits are trivially Bogotá numbers, there are not repunits in the data.
A336983, A336984, A336986 and this sequence form a partition of the set of positive integers N*

Examples

			7 is a term because there are not k < 7  such that 7 = k + sum of digits of k, and that are not q such that 7 = q * product of digits of q.
13 is not of the form q * product of digits of q for any q <= 13, so 13 is not a Bogotá number, but 13 = 11 + (1+1) is not Colombian, hence 13 is not a term.
42 is Colombian because there does not exist m < 42 such that 42 = m + sum of digits of m, but as 42 = 21 * (2*1) is a Bogota number, 42 is not a term.
		

Crossrefs

Cf. A003052 (Colombian), A176995 (not Colombian), A336826 (Bogotá numbers), A336983 (Bogotá not Colombian), A336984 (Bogotá and Colombian), this sequence (Colombian not Bogotá), A336986 (not Colombian and not Bogotá).

Programs

  • Mathematica
    m = 600; Intersection[Complement[Range[m], Select[Union[Table[n + Plus @@ IntegerDigits[n], {n, 1, m}]], # <= m &]], Complement[Range[m], Select[Union[Table[n * Times @@ IntegerDigits[n], {n, 1, m}]], # <= m &]]] (* Amiram Eldar, Aug 26 2020 *)
  • PARI
    lista(nn) = Vec(setintersect(setminus([1..nn], Set(vector(nn, k, k+sumdigits(k)))), setminus([1..nn], Set(vector(nn, k, k*vecprod(digits(k))))))); \\ Michel Marcus, Aug 26 2020
Previous Showing 51-60 of 97 results. Next