cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A003236 a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k)*C((k+1)^2, n).

Original entry on oeis.org

1, 3, 24, 320, 6122, 153762, 4794664, 178788528, 7762727196, 384733667780, 21434922419504, 1326212860090560, 90227121642144424, 6694736236093168200, 538028902298395832832, 46558260925421295229568, 4316186393637505403773328
Offset: 0

Views

Author

Keywords

References

  • H. W. Gould, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A346183.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n,k] * Binomial[(k+1)^2, n], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Dec 13 2020 *)

Formula

a(n) ~ c * d^n * (n-1)!, where d = 4 / (w*(2-w)) = 6.17655460948348035823168... and c = exp(1/2 - w^2/8) / (Pi*sqrt(2*w*(1-w))) = 0.740112385268663459927202070799244309431121698475089032623558890186368006364..., where w = -LambertW(-2*exp(-2)) = -A226775. - Vaclav Kotesovec, Dec 13 2020, updated Jul 09 2021
a(n) / A003235(n) ~ -2 / LambertW(-2*exp(-2)) = 4.92155363456750509... - Vaclav Kotesovec, Jul 09 2021

Extensions

More terms from Sean A. Irvine, Mar 19 2015

A003102 Largest number divisible by all numbers < its n-th root.

Original entry on oeis.org

2, 24, 420, 27720, 720720, 36756720, 5354228880, 481880599200, 25619985190800, 10685862914126400, 876240758958364800, 113035057905629059200, 24792356033967973651200, 9690712164777231700912800, 2364533768205644535022723200, 396059406174445459616306136000
Offset: 1

Views

Author

N. J. A. Sloane, H. W. Gould

Keywords

References

  • A. Murthy, An application of Smarandache LCM sequence and the largest number divisible by all the integers not exceeding the r-th root, Preprint.
  • N. Ozeki, On the problem 1, 2, 3, ..., [ n^(1/k) ] | n, Journal of the College of Arts and Sciences, Chiba University (Chiba, Japan), Vol. 3, No. 4 (Sept. 1962), pp. 427-431 [ Math. Rev. 30 213(1085) 1965 ].
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 277.
  • D. O. Shklyarsky, N. N. Chentsov and I. M. Yaglom, Selected Problems and Theorems in Elementary Mathematics; Problem 78; Mir Publishers, Moscow.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    k=1; lc=1; Table[While[r=Floor[lc^(1/n)]; Union[Mod[lc,Range[r]]]=={0}, k++; good=lc; lc=LCM[lc,k]]; m=2; While[r=Floor[(m*good)^(1/n)]; Union[Mod[m*good,Range[r]]]=={0}, m++ ]; m=m-1; m*good, {n,16}] (* T. D. Noe, Aug 01 2006 *)

Formula

It has been shown that a(n) < {p(2n)}^n, where p(2n) is the (2n)-th prime. - Amarnath Murthy, Apr 26 2001

Extensions

Corrected and extended by T. D. Noe, Aug 01 2006

A307093 a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k^2).

Original entry on oeis.org

1, 0, -1, -2, -2, 1, 10, 29, 63, 117, 191, 265, 264, -12, -1014, -3654, -9634, -21929, -45424, -87551, -158289, -267616, -415513, -563200, -561430, 12625, 2202084, 8368243, 23532027, 57848882, 131000395, 279675274, 569701663, 1114392742, 2099105261, 3805794420
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k * Binomial[n, k^2], {k, 0, n}]; Array[a, 36, 0] (* Amiram Eldar, May 20 2021 *)
  • PARI
    {a(n) = sum(k=0, sqrtint(n), (-1)^k*binomial(n, k^2))}

A177812 Triangular array read by rows: binomial(n,k^2), k=0..floor(sqrt(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 5, 5, 1, 6, 15, 1, 7, 35, 1, 8, 70, 1, 9, 126, 1, 1, 10, 210, 10, 1, 11, 330, 55, 1, 12, 495, 220, 1, 13, 715, 715, 1, 14, 1001, 2002, 1, 15, 1365, 5005, 1, 16, 1820, 11440, 1, 1, 17, 2380, 24310, 17, 1, 18, 3060, 48620, 153
Offset: 0

Views

Author

Roger L. Bagula, Dec 13 2010

Keywords

Comments

Row sums are A003099.

Examples

			{1},
{1, 1},
{1, 2},
{1, 3},
{1, 4, 1},
{1, 5, 5},
{1, 6, 15},
{1, 7, 35},
{1, 8, 70},
{1, 9, 126, 1},
{1, 10, 210, 10}
		

Crossrefs

Cf. A003099.

Programs

  • Mathematica
    Clear[t, n, m];
    t[n_, m_] = Binomial[n, m^2];
    Table[Table[t[n, m], {m, 0, Floor[Sqrt[n]]}], {n, 0, 10}];
    Flatten[%]
  • PARI
    tabf(nn) = {for (n = 0, nn, for (k = 0, sqrtint(n), print1(binomial(n, k^2), ", ");); print(););} \\ Michel Marcus, Feb 13 2014

Extensions

Clarified definition, changed keyword to tabf. - N. J. A. Sloane, Dec 16 2010
More terms from Michel Marcus, Feb 13 2014

A177815 Triangle read by rows: binomial(n, m^3).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 1, 9, 9, 1, 10, 45, 1, 11, 165, 1, 12, 495, 1, 13, 1287, 1, 14, 3003, 1, 15, 6435, 1, 16, 12870, 1, 17, 24310, 1, 18, 43758, 1, 19, 75582, 1, 20, 125970
Offset: 0

Views

Author

Roger L. Bagula, Dec 13 2010

Keywords

Comments

Row sums are: {1, 2, 3, 4, 5, 6, 7, 8, 10, 19, 56, 177, 508, 1301, 3018, 6451, 12887, 24328, 43777, 75602, 125991,...}.
First length 4 row is: {1, 27, 2220075, 1}.

Examples

			{1},
{1, 1},
{1, 2},
{1, 3},
{1, 4},
{1, 5},
{1, 6},
{1, 7},
{1, 8, 1},
{1, 9, 9},
{1, 10, 45},
{1, 11, 165},
{1, 12, 495},
{1, 13, 1287},
{1, 14, 3003},
{1, 15, 6435},
{1, 16, 12870},
{1, 17, 24310},
{1, 18, 43758},
{1, 19, 75582},
{1, 20, 125970},
...
{1, 27, 2220075, 1}
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] = Binomial[n, m^3];
    Table[Table[t[n, m], {m, 0, Floor[n^(1/3)]}], {n, 0, 20}];
    Flatten[%]

A177822 Sub-triangle of A008292: terms with square indices.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 11, 1, 26, 1, 1, 57, 57, 1, 120, 1191, 1, 247, 15619, 1, 502, 156190, 1, 1013, 1310354, 1, 1, 2036, 9738114, 2036
Offset: 0

Views

Author

Roger L. Bagula, Dec 13 2010

Keywords

Comments

Row sums are {1, 2, 5, 12, 28, 115, 1312, 15867, 156693, 1311369, 9742187,...}.

Examples

			{1},
{1, 1},
{1, 4},
{1, 11},
{1, 26, 1},
{1, 57, 57},
{1, 120, 1191},
{1, 247, 15619},
{1, 502, 156190},
{1, 1013, 1310354, 1},
{1, 2036, 9738114, 2036}
		

Crossrefs

Programs

  • Mathematica
    << DiscreteMath`Combinatorica`
    a = Table[Table[Eulerian[n + 1, m^2], {m, 0, Floor[Sqrt[n]]}], {n, 0, 10}];
    Flatten[%]

Extensions

Edited by N. J. A. Sloane, Jan 01 2011

A369406 a(n) = Sum_{k=0..n} binomial(n,k^3).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 19, 56, 177, 508, 1301, 3018, 6451, 12887, 24328, 43777, 75602, 125991, 203512, 319793, 490338, 735496, 1081601, 1562302, 2220104, 3108162, 4292581, 5857016, 7920222, 10719709, 14991758, 23535855, 47071676, 124403657, 386938194, 1252225819
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2024

Keywords

Comments

a(n) equals the number of subsets of [n] whose cardinalities are cube.
Binomial transform of the characteristic function of cubes A010057.
Partial sums of A280351.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k^3], {k, 0, n^(1/3)}], {n, 0, 38}]
    nmax = 38; CoefficientList[Series[(1/(1 - x)) Sum[(x/(1 - x))^k^3, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: (1/(1 - x)) * Sum_{k>=0} (x/(1 - x))^(k^3).
Previous Showing 11-17 of 17 results.