cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A174707 The number of permutations p of {1,...,n} such that |p(i)-p(i+1)| is in {3,4,5} for all i from 1 to n-1.

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 28, 144, 292, 272, 160, 272, 844, 3888, 15830, 49080, 113468, 208224, 352112, 662810, 1497286, 3853054, 10238142, 25892602, 60223752, 130042700, 271136524, 572265830, 1258121046, 2878870324, 6714840216, 15583281118, 35434903508, 78777769972, 172664047056
Offset: 1

Views

Author

W. Edwin Clark, Mar 27 2010

Keywords

Comments

For n>1, a(n)/2 is the number of Hamiltonian paths on the graph with vertex set {1,...,n} where i is adjacent to j iff |i-j| is in {3,4,5}.

Examples

			For n = 6 the a(6) = 2 permutations are (3,6,2,5,1,4), (4,1,5,2,6,3).
		

Crossrefs

Programs

  • Maple
    f:= proc(m, M, n) option remember; local i, l, p, cnt; l:= array([i$i=1..n]); cnt:=0; p:= proc(t) local d, j, h; if t=n then d:= `if`(t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then cnt:= cnt+1 fi else for j from t to n do l[t], l[j]:= l[j], l[t]; d:= `if`(t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then p(t+1) fi od; h:= l[t]; for j from t to n-1 do l[j]:= l[j+1] od; l[n]:= h fi end; p(1); cnt end: a:= n-> f(3, 5, n); seq(a(n), n=1..14); # Alois P. Heinz, Mar 27 2010
  • Mathematica
    f[m_, M_, n_] := f[m, M, n] = Module[{i, l, p, cnt}, Do[l[i] = i, {i, 1, n}]; cnt = 0; p[t_] := Module[{d, j, h}, If[t == n, d = If[t == 1, m, Abs[l[t] - l[t-1]]]; If [m <= d && d <= M, cnt = cnt+1], For[j = t, j <= n, j++, {l[t], l[j]} = {l[j], l[t]}; d = If[t == 1, m, Abs[l[t] - l[t-1]]]; If [m <= d && d <= M, p[t+1]]]; h = l[t]; For[j = t, j <= n-1, j++, l[j] = l[j+1]]; l[n] = h]]; p[1]; cnt]; a[n_] := f[3, 5, n]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 14}] (* Jean-François Alcover, Jun 01 2015, after Alois P. Heinz *)

Extensions

Edited by Alois P. Heinz, Nov 27 2010
a(26)-a(35) from Andrew Howroyd, Apr 05 2016

A302118 Number of permutations p of [n] such that |p(i) - p(i-1)| is in {1,3} for all i from 2 to n.

Original entry on oeis.org

1, 1, 2, 2, 8, 12, 32, 40, 88, 118, 244, 338, 642, 912, 1650, 2402, 4182, 6200, 10492, 15786, 26166, 39814, 64994, 99738, 161020, 248670, 398248, 617912, 983890, 1531796, 2428988, 3790980, 5993746, 9371174, 14785512, 23146268, 36465816, 57137316, 89924384
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2018

Keywords

Examples

			a(3) = 2: 123, 321.
a(4) = 8: 1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321.
a(5) = 12: 12345, 12543, 14325, 14523, 32145, 32541, 34125, 34521, 52143, 52341, 54123, 54321.
		

Crossrefs

Formula

G.f.: (x^16 -3*x^15 -2*x^14 +3*x^12 +6*x^11 +2*x^10 -6*x^9 -10*x^8 -6*x^7 +6*x^6 +4*x^5 +3*x^4 -x^3 -2*x^2+1) / ((x-1) *(x+1) *(x^5+x^3+x-1) *(x^4+x^2-1)^2).
a(n) = 2 * A302119(n) for n > 1.
Limit_{n->infinity} a(n)/a(n+1) = A293560 = 1/A293506 = 0.63688291680184484849...

A069241 Number of Hamiltonian paths in the graph on n vertices {1,...,n}, with i adjacent to j iff |i-j| <= 2.

Original entry on oeis.org

1, 1, 1, 3, 6, 10, 17, 28, 44, 68, 104, 157, 235, 350, 519, 767, 1131, 1665, 2448, 3596, 5279, 7746, 11362, 16662, 24430, 35815, 52501, 76956, 112797, 165325, 242309, 355135, 520490, 762830, 1117997, 1638520, 2401384, 3519416, 5157972, 7559393, 11078847
Offset: 0

Views

Author

Don Knuth, Apr 13 2002

Keywords

Comments

Equivalently, the number of bandwidth-at-most-2 arrangements of a straight line of n vertices.

Examples

			For example, the six Hamiltonian paths when n=4 are 1234, 1243, 1324, 1342, 2134, 3124.
		

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[1,1,1,0,1]]). Matrix(5, (i,j)-> if i=j-1 then 1 elif j=1 then [3,-3,2,-2,1][i] else 0 fi)^n)[1,3]: seq(a(n), n=0..50); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    a[0] = a[1] = a[2] = 1; a[3] = 3; a[4] = 6; a[n_] := a[n] = 3a[n-1] - 3a[n-2] + 2a[n-3] - 2a[n-4] + a[n-5]; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Feb 13 2015 *)
    CoefficientList[Series[(3+x+x^2)/(1-x-x^3)-(2-x)/(1-x)^2,{x,0,60}],x] (* or *) LinearRecurrence[{3,-3,2,-2,1},{1,1,1,3,6},60] (* Harvey P. Dale, Apr 07 2019 *)

Formula

a(n) = A003274(n)/2, n > 1.
a(n) = 3*s(n) + s(n-1) + s(n-2) - 2 - n, where s(n) = A000930(n).
G.f.: (3+x+x^2)/(1-x-x^3) - (2-x)/(1-x)^2.
Lim_{n->infinity} a(n+1)/a(n) = A092526 = 1/A263719. - Alois P. Heinz, Apr 15 2018

A333833 Number of permutations p of [n] such that |p(i) - p(i-1)| <= 2 and |p(i) - p(i-2)| <= 3.

Original entry on oeis.org

1, 1, 2, 6, 12, 14, 18, 28, 42, 56, 74, 102, 144, 200, 274, 376, 520, 720, 994, 1370, 1890, 2610, 3604, 4974, 6864, 9474, 13078, 18052, 24916, 34390, 47468, 65520, 90436, 124826, 172294, 237814, 328250, 453076, 625370, 863184, 1191434, 1644510, 2269880, 3133064
Offset: 0

Views

Author

Alois P. Heinz, Apr 07 2020

Keywords

Examples

			a(5) = 14: 12345, 12354, 12435, 12453, 13245, 21345, 31245, 35421, 45321, 53421, 54213, 54231, 54312, 54321.
a(6) = 18: 123456, 123465, 123546, 123564, 124356, 132456, 213456, 213465, 312456, 465321, 564312, 564321, 645321, 653421, 654213, 654231, 654312, 654321.
		

Crossrefs

Programs

  • Mathematica
    Join[{1, 1, 2, 6, 12}, LinearRecurrence[{1, 0, 0, 1}, {14, 18, 28, 42}, 40]] (* Jean-François Alcover, Oct 26 2021 *)

Formula

G.f.: -(2*x^8+4*x^7+2*x^6+x^5+5*x^4+4*x^3+x^2+1)/(x^4+x-1).
a(n) = 2*A302510(n-2) for n >= 6.
Limit_{n-> infinity} a(n+1)/a(n) = A086106.

A363181 Number of permutations p of [n] such that for each i in [n] we have: (i>1) and |p(i)-p(i-1)| = 1 or (i

Original entry on oeis.org

1, 0, 2, 2, 8, 14, 54, 128, 498, 1426, 5736, 18814, 78886, 287296, 1258018, 4986402, 22789000, 96966318, 461790998, 2088374592, 10343408786, 49343711666, 253644381032, 1268995609502, 6756470362374, 35285321738624, 194220286045506, 1054759508543554
Offset: 0

Views

Author

Alois P. Heinz, May 19 2023

Keywords

Comments

Number of permutations p of [n] such that each element in p has at least one neighbor whose value is smaller or larger by one.
Number of permutations of [n] having n occurrences of the 1-box pattern.

Examples

			a(0) = 1: (), the empty permutation.
a(1) = 0.
a(2) = 2: 12, 21.
a(3) = 2: 123, 321.
a(4) = 8: 1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321.
a(5) = 14: 12345, 12354, 12543, 21345, 21543, 32145, 32154, 34512, 34521, 45123, 45321, 54123, 54312, 54321.
a(6) = 54: 123456, 123465, 123654, 124356, 124365, 125634, 125643, 126534, 126543, 213456, 213465, 214356, 214365, 215634, 215643, 216534, 216543, 321456, 321654, 341256, 341265, 342156, 342165, 345612, 345621, 346512, 346521, 431256, 431265, 432156, 432165, 435612, 435621, 436512, 436521, 456123, 456321, 561234, 561243, 562134, 562143, 563412, 563421, 564312, 564321, 651234, 651243, 652134, 652143, 653412, 653421, 654123, 654312, 654321.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 0, 2$2][n+1],
          3/2*a(n-1)+(n-3/2)*a(n-2)-(n-5/2)*a(n-3)+(n-4)*a(n-4))
        end:
    seq(a(n), n=0..30);

Formula

a(n) = A346462(n,n).
a(n)/2 mod 2 = A011655(n-1) for n>=1.
a(n) ~ sqrt(Pi) * n^((n+1)/2) / (2 * exp(n/2 - sqrt(n)/2 + 7/16)) * (1 - 119/(192*sqrt(n))). - Vaclav Kotesovec, May 26 2023

A137725 Number of sequences of length n with elements {-2,-1,+1,+2}, such that the sum of elements of the whole sequence but of no proper subsequence equals 0 modulo n. For n>=4, the number of Hamiltonian (directed) circuits on the circulant graph C_n(1,2).

Original entry on oeis.org

4, 4, 16, 18, 24, 32, 46, 58, 82, 112, 158, 220, 316, 450, 650, 938, 1364, 1982, 2892, 4220, 6170, 9022, 13206, 19332, 28314, 41472, 60760, 89022, 130446, 191150, 280120, 410506, 601600, 881656, 1292102, 1893634, 2775226, 4067256, 5960822, 8735972, 12803156, 18763898, 27499794, 40302866, 59066684
Offset: 1

Views

Author

Max Alekseyev, Feb 08 2008

Keywords

Comments

Number of 1-D walks with jumps to next-nearest neighbors with n steps, starting at 0 and ending at -2n, -n, 0, n, or 2n, such that every point is visited at most once and every pair of points at the distance n contains at least one unvisited point (not counting the ending visit). Cf. A092765.
For n>1, the number of circular permutations (counted up to rotations) of {0, 1,...,n-1} such that the distance between every two adjacent elements is -2,-1,1,or 2 modulo n. Cf. A003274.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-2*x^2-2*x-6-1/(x+1)+2/(x-1)^2+1/(x-1)+(4*x-6)/(x^3+x-1), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(-2*x^2-2*x-6-1/(x+1)+2/(x-1)^2+1/(x-1)+(4*x-6)/(x^3+x-1)) \\ G. C. Greubel, Apr 28 2017

Formula

For even n>=4, a(n) = 2*(n + 3*A000930(n) - 2*A000930(n-1)); for odd n>=3, a(n) = 2*(n + 1 + 3*A000930(n) - 2*A000930(n-1)).
For n>8, a(n) = 2*a(n-1) - a(n-3) - a(n-5) + a(n-6) or a(n) = a(n-1) + a(n-2) - a(n-5) - 4.
O.g.f.: -2*x^2-2*x-6-1/(x+1)+2/(x-1)^2+1/(x-1)+(4*x-6)/(x^3+x-1). - R. J. Mathar, Feb 10 2008

Extensions

Typo in formulas corrected by Max Alekseyev, Nov 03 2010

A249631 Number of permutations p of {1,...,n} such that |p(i+1)-p(i)| < k, k=2,...,n; T(n,k), read by rows.

Original entry on oeis.org

2, 2, 6, 2, 12, 24, 2, 20, 72, 120, 2, 34, 180, 480, 720, 2, 56, 428, 1632, 3600, 5040, 2, 88, 1042, 5124, 15600, 30240, 40320, 2, 136, 2512, 15860, 61872, 159840, 282240, 362880, 2, 208, 5912, 50186, 236388, 773040, 1764000, 2903040, 3628800
Offset: 2

Views

Author

Li-yao Xia, Nov 02 2014

Keywords

Examples

			Triangle starts with n=2:
2;
2,  6;
2, 12,  24;
2, 20,  72, 120;
2, 34, 180, 480, 720;
		

Crossrefs

Cf. A000142, main diagonal, A062119, subdiagonal.
Cf. A003274, A174700, A174701, A174702, 2nd to 5th columns, T(n,k), k=3,4,5,6.
Cf. A174703, A174704, A174705, A174706, A174707, A174708, similar definitions.

Programs

  • Haskell
    a n x = filter (\l -> all (< x) (zipWith (\x y -> abs (x - y)) l (tail l))) (permutations [1 .. n])
    
  • PARI
    isokp(perm, k) = {for (i=1, #perm-1, if (abs(perm[i]-perm[i+1]) >= k, return (0));); return (1);}
    tabl(nn) = {for (n=2, nn, for (k=2, n, print1(sum(i=1, n!, isokp(numtoperm(n, i), k)), ", ");); print(););} \\ Michel Marcus, Nov 06 2014
Previous Showing 11-17 of 17 results.