cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 378 results. Next

A064857 Numerators of partial sums of reciprocals of lcm(1..n) = A003418(n).

Original entry on oeis.org

1, 3, 5, 7, 53, 107, 25, 1501, 563, 901, 12389, 16519, 322121, 644243, 53687, 1288489, 3650719, 4380863, 18917363, 3557111, 104045497, 416181989, 2393046437, 455818369, 23930464373, 47860928747, 10255913303, 11044829711
Offset: 1

Views

Author

Labos Elemer, Oct 08 2001

Keywords

Examples

			n = 7: LCM values: 1, 2, 6, 12, 60, 60, 420; partial sum = 1 + 1/2 + 1/6 + 1/12 + 1/60 + 1/60 + 1/420 = (420 + 210 + 70 + 35 + 7 + 7 + 1)/420 = 750/420 = 25/14, so a(7) = 25.
		

Crossrefs

Programs

  • Maple
    R:= 1: m:= 1: for n from 2 to 100 do m:= ilcm(m,n); R:= R,1/m od:
    P:= ListTools:-PartialSums([R]):
    map(numer,P); # Robert Israel, Jan 30 2025
  • Mathematica
    q[x_] := Apply[LCM, Table[j, {j, 1, x}]] Table[Numerator[Apply[Plus, Table[1/q[w], {w, 1, m}]]], {m, 1, 30}]
    Accumulate[Table[1/LCM@@Range[n],{n,30}]]//Numerator (* Harvey P. Dale, Aug 08 2021 *)

Formula

a(n) = numerator(Sum_{j=1..n} 1/lcm(1..n)).

A096180 Triangle read by rows: fraction of integers having k of the first n positive integers as divisors is T(n,k)/A003418(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 4, 3, 1, 16, 20, 16, 7, 1, 16, 20, 12, 6, 5, 1, 96, 136, 92, 48, 36, 11, 1, 192, 272, 136, 124, 66, 38, 11, 1, 576, 720, 464, 360, 206, 122, 58, 13, 1, 576, 720, 392, 384, 188, 154, 70, 26, 9, 1, 5760, 7776, 4640, 4232, 2264, 1728, 854, 330, 116, 19
Offset: 1

Views

Author

Matthew Vandermast, Jun 19 2004

Keywords

Comments

Sum of entries in n-th row is A003418(n), the least common multiple of integers 1 to n.

Examples

			Triangle begins:
1
1 1
2 3 1
4 4 3 1
16 20 16 7 1
16 20 12 6 5 1
		

Crossrefs

Cf. A003418, A217863 (first column).

Programs

  • PARI
    lcmn(n) = lcm(vector(n, k, k));
    rowd(n) = {v = vector(n); for (k=1, lcmn(n), d = divisors(k); v[sum(j=1, #d, d[j]<=n)]++;); v;} \\ Michel Marcus, Apr 29 2017

A139547 Triangle read by rows: T(n,k) = A003418(A010766).

Original entry on oeis.org

1, 2, 1, 6, 1, 1, 12, 2, 1, 1, 60, 2, 1, 1, 1, 60, 6, 2, 1, 1, 1, 420, 6, 2, 1, 1, 1, 1, 840, 12, 2, 2, 1, 1, 1, 1, 2520, 12, 6, 2, 1, 1, 1, 1, 1, 2520, 60, 6, 2, 2, 1, 1, 1, 1, 1, 27720, 60, 6, 2, 2, 1, 1, 1, 1, 1, 1, 27720, 60, 12, 6, 2, 2, 1, 1, 1, 1, 1, 1, 360360, 60, 12, 6, 2, 2, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Mats Granvik, Apr 27 2008, May 07 2008

Keywords

Comments

This triangle fits the formula of I. Vardi in the Mathworld link about the von Mangoldt function. That formula is the basis for Chebyshev's estimate for the number of primes.

Examples

			Triangle begins:
1;
2,1;
6,1,1;
12,2,1,1;
60,2,1,1,1;
60,6,2,1,1,1;
420,6,2,1,1,1,1;
840,12,2,2,1,1,1,1;
2520,12,6,2,1,1,1,1,1;
2520,60,6,2,2,1,1,1,1,1;
27720,60,6,2,2,1,1,1,1,1,1;
27720,60,12,6,2,2,1,1,1,1,1,1;
360360,60,12,6,2,2,1,1,1,1,1,1,1;
...
		

References

  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 155.

Crossrefs

Programs

  • Mathematica
    nn = 13; a = Exp[Accumulate[MangoldtLambda[Range[nn]]]]; Flatten[Table[Table[a[[Floor[n/k]]], {k, 1, n}], {n, 1, nn}]][[1 ;; 89]]
    (*As a limit of a recurrence*)
    Clear[t, s, n, k, z, nn, ss, a, aa];(*z=1 corresponds to Zeta[1],z=2 corresponds to Zeta[2],z=ZetaZero[1] corresponds to Zeta[ZetaZero[1]],etc.*) z = 1; a = Normal[Series[Zeta[s], {s, z, 0}]]; ss = 10^40; s = N[z + 1/ss, 10^2]; nn = 13; t[n_, k_] := t[n, k] = If[k == 1, n*Zeta[s] - Sum[t[n, i]/i^(s - 1), {i, 2, n}], If[n >= k, t[Floor[n/k], 1], 0], 0]; aa = Table[Table[If[n >= k, t[n, k] - a, 0], {k, 1, n}], {n, 1, nn}]; Flatten[Round[Exp[aa]]][[1 ;; 89]]
    (* Mats Granvik, Jun 05 2016 *)

Formula

From Mats Granvik, Jun 05 2016: (Start)
T(n,k)=A003418(floor(n/k)).
Recurrence involving log(n!):
Let s=1.
T(n, k) = if k = 1 then log(n!) - Sum_{i=2..n} T(n, i)/i^(s - 1) else if n >= k then T(floor(n/k), 1) else 0 else 0.
Recurrence involving the Riemann zeta function:
Let z = 1.
Let a = the series expansion of zeta(s) at z.
Let ss -> Infinity.
Let s = z + 1/ss.
Then T(n,k) is generated by the recurrence:
a + Ts(n, k) = if k = 1 then n*zeta(s) - Sum_{i=2..n} Ts(n, i)/i^(s - 1) else if n >= k then Ts(floor(n/k), 1) else 0 else 0.
(End)

Extensions

Edited by Mats Granvik, Jun 28 2009
Further edits from N. J. A. Sloane, Jul 03 2009

A236856 Partial sums of A003418 starting summing from A003418(1), with a(0) = 0.

Original entry on oeis.org

0, 1, 3, 9, 21, 81, 141, 561, 1401, 3921, 6441, 34161, 61881, 422241, 782601, 1142961, 1863681, 14115921, 26368161, 259160721, 491953281, 724745841, 957538401, 6311767281, 11665996161, 38437140561, 65208284961, 145521718161, 225835151361, 2554924714161
Offset: 0

Views

Author

Antti Karttunen, Feb 27 2014

Keywords

Comments

Similar comments about the trailing digits apply here as in A173185.
a(n) gives the position of the last element of row n in irregular tables like A238280.
From a(2)=3 onward all terms are divisible by three.
a(n) is divisible by 73 for n >= 72. Therefore a(n)/3 is prime for only 13 values of n: 3, 4, 6, 8, 9, 12, 16, 22, 23, 31, 35, 48 and 53. - Amiram Eldar, Sep 19 2022

Crossrefs

One less than A173185.

Programs

  • Mathematica
    Prepend[Accumulate @ Table[LCM @@ Range[n], {n, 1, 30}], 0] (* Amiram Eldar, Sep 19 2022 *)
  • Scheme
    (define (A236856 n) (if (< n 2) n (+ (A236856 (- n 1)) (A003418 n))))

Formula

a(n) = A173185(n)-1.

A236857 Each n occurs the least common multiple (LCM) of {1, 2, ..., n} (= A003418(n)) times.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Antti Karttunen, Feb 27 2014

Keywords

Comments

Least k such that A236856(k) >= n.
Zero occurs once at a(0), because A003418(0)=1 by definition.
Useful when computing irregular tables like A238280, as a(n) gives the row index of the n-th term in such sequences. Note that as A238280 begins with row 1, it starts referring to this sequence only from a(1)=1 onward.

Examples

			Can be viewed as an irregular table, where each row n (starting from row zero) contains A003418(n) copies of n:
0;
1;
2, 2;
3, 3, 3, 3, 3, 3;
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4;
...
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Flatten[Table[PadRight[{},LCM@@Range[n],{n}],{n,6}]]] (* Harvey P. Dale, Jul 29 2021 *)

A059794 a(n) = n* - 2^(n-1), where n* (A003418) = least common multiple of the numbers [1,...,n].

Original entry on oeis.org

0, 0, 2, 4, 44, 28, 356, 712, 2264, 2008, 26696, 25672, 356264, 352168, 343976, 687952, 12186704, 12121168, 232530416, 232268272, 231743984, 230695408, 5350034576, 5345840272, 26754367184, 26737589968, 80246324336, 80179215472
Offset: 1

Views

Author

Kathleen Cussen (ehlana52(AT)hotmail.com), Feb 22 2001

Keywords

Comments

It is known that this sequence is always nonnegative - see references.
LCM(1,2,3...n) = n* LCM( binomial(n-1,0), binomial(n-1,1),..., binomial(n-1,n-1)) - see American Mathematical Monthly E2686. - Paul Mills, Feb 14 2002

Examples

			Let n=4. Then n*=12 and 2^(4-1)=8. Then we calculate 12-8=4 to be the second term of the sequence.
		

References

  • G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, pp. 12-13, Publications de l'Institut Cartan, 1990.

Crossrefs

Programs

  • Maple
    A059794 := n->lcm(seq(i,i=1..n))-2^(n-1);
  • Mathematica
    a[n_] := LCM @@ Range[n] - 2^(n-1); Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Jul 05 2012 *)
  • PARI
    a(n) = lcm(vector(n, i, i)) - 2^(n-1); \\ Michel Marcus, Jan 26 2015

Extensions

Corrected and extended by Vladeta Jovovic, Feb 24 2001
References from Jean-Paul Allouche, Feb 17 2002

A064858 Denominators of partial sums of reciprocals of lcm(1..n) = A003418(n).

Original entry on oeis.org

1, 2, 3, 4, 30, 60, 14, 840, 315, 504, 6930, 9240, 180180, 360360, 30030, 720720, 2042040, 2450448, 10581480, 1989680, 58198140, 232792560, 1338557220, 254963280, 13385572200, 26771144400, 5736673800, 6177956400, 291136195350
Offset: 1

Views

Author

Labos Elemer, Oct 08 2001

Keywords

Examples

			n = 7: LCM values: 1, 2, 6, 12, 60, 60, 420; partial sum = 1 + 1/2 + 1/6 + 1/12 + 1/60 + 1/60 + 1/420 = (420 + 210 + 70 + 35 + 7 + 7 + 1)/420 = 750/420 = 25/14, so a(7) = 14.
		

Crossrefs

Programs

  • Maple
    R:= 1: m:= 1: for n from 2 to 100 do m:= ilcm(m,n); R:= R,1/m od:
    P:= ListTools:-PartialSums([R]):
    map(denom, P); # Robert Israel, Jan 30 2025
  • Mathematica
    q[x_] := Apply[LCM, Table[j, {j, 1, x}]] Table[Denominator[Apply[Plus, Table[1/q[w], {w, 1, m}]]], {m, 1, 30}]

Formula

a(n) = denominator(Sum_{j=1..n} 1/lcm(1..j)).

A225637 a(n) = A003418(n)/A225629(n).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 2, 5, 7, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Antti Karttunen, May 13 2013

Keywords

Comments

For n >= 2, a(n) is the final factor by which the A225629(n) needs to be multiplied that it finally reaches the fixed point A003418(n) of the column n of A225630.
The first composite, 4, occurs at n=20. The first composite which is not power of prime, namely 6, occurs at n=61.
For all n >= 3, a(n) divides A225558(n).

Crossrefs

Programs

A225643 Number of steps to reach a fixed point (A003418(n)), when starting from partition {n} of n and continuing with the process described in A225642.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 4, 4, 4, 5, 4, 6, 5, 6, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 8, 9, 8, 8, 9, 9, 9, 9, 9, 10, 11, 10, 10, 11, 11, 10, 10, 12, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 11, 13, 12, 12, 12, 12, 12, 12, 13, 13, 14, 14
Offset: 0

Views

Author

Antti Karttunen, May 15 2013

Keywords

Comments

a(0)=0, as its only partition is an empty partition {}, and by convention lcm()=1, thus it takes no steps to reach from 1 to A003418(0)=1.
The records occur at positions 0, 3, 5, 9, 11, 13, 19, 27, 30, 33, 43, 44, 51, 65, 74, 82, ... and they seem to occur in order, i.e., as A001477. Thus the record-positions probably also give the left inverse function for this sequence. It also seems that each integer occurs only finite times in this sequence, so there should be a right inverse function as well.

Crossrefs

Programs

Formula

a(n) = A225644(n) - 1.

A250270 Products of terms of A003418.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 960, 1024, 1152, 1296, 1440, 1536, 1680, 1728, 1920, 2048, 2160, 2304, 2520, 2592, 2880, 3072, 3360, 3456
Offset: 1

Views

Author

Matthew Vandermast, Dec 16 2014

Keywords

Comments

Includes all factorials and Jordan-Polya numbers, since n! = Product_{i = 1..n} A003418(floor(n/i)) for positive n.

Examples

			720 = 2*6*60 = 12*60. Since 2, 6, 12 and 60 are all terms of A003418, 720 is a term of this sequence.
		

Crossrefs

Range of values of A253139. Subsequences include A000142, A001013, A001813, A025527, A064350, A166338, A250569.
Subsequence of A025487.

Programs

  • PARI
    f(n) = lcm(vector(n, i, i)); \\ A003418
    mul(x,y) = x*y;
    lista(nn) = {my(v = vector(nn, k, f(k)), lim = f(nn+1), ok = 0, nv); while (!ok,  nv = select(x->(xMichel Marcus, May 09 2021
Previous Showing 11-20 of 378 results. Next