A086122
Primes of the form (5^k-1)/4.
Original entry on oeis.org
31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531, 35032461608120426773093239582247903282006548546912894293926707097244777067146515037165954709053039550781
Offset: 1
A218750
a(n) = (47^n - 1)/46.
Original entry on oeis.org
0, 1, 48, 2257, 106080, 4985761, 234330768, 11013546097, 517636666560, 24328923328321, 1143459396431088, 53742591632261137, 2525901806716273440, 118717384915664851681, 5579717091036248029008, 262246703278703657363377, 12325595054099071896078720
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 48*Self(n-1) - 47*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
Table[(47^n - 1)/46, {n, 0, 19}] (* Alonso del Arte, Nov 04 2012 *)
LinearRecurrence[{48, -47}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
-
A218750(n):=(47^n-1)/46$ makelist(A218750(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218750(n)=47^n\46
A229437
T(n,k)=Number of nXk 0..6 arrays of the sum of the corresponding element, the element to the east and the element to the south in a larger (n+1)X(k+1) 0..2 array.
Original entry on oeis.org
7, 43, 43, 259, 1213, 259, 1555, 31111, 31111, 1555, 9331, 775213, 2985887, 775213, 9331, 55987, 19122559, 262875231, 262875231, 19122559, 55987, 335923, 469959685, 22257074415, 74760946845, 22257074415, 469959685, 335923, 2015539
Offset: 1
Some solutions for n=2 k=4
..0..2..4..3....3..3..1..0....0..0..2..1....0..2..5..1....3..0..0..2
..3..4..1..0....6..4..3..3....1..2..2..0....1..2..3..4....3..2..0..1
A218726
a(n) = (23^n - 1)/22.
Original entry on oeis.org
0, 1, 24, 553, 12720, 292561, 6728904, 154764793, 3559590240, 81870575521, 1883023236984, 43309534450633, 996119292364560, 22910743724384881, 526947105660852264, 12119783430199602073, 278755018894590847680, 6411365434575589496641, 147461404995238558422744
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 24*Self(n-1)-23*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{24, -23}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(23^Range[0,20]-1)/22 (* Harvey P. Dale, Nov 09 2012 *)
-
A218726(n):=(23^n-1)/22$
makelist(A218726(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218726(n)=23^n\22
A218732
a(n) = (29^n - 1)/28.
Original entry on oeis.org
0, 1, 30, 871, 25260, 732541, 21243690, 616067011, 17865943320, 518112356281, 15025258332150, 435732491632351, 12636242257338180, 366451025462807221, 10627079738421409410, 308185312414220872891, 8937374060012405313840, 259183847740359754101361
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 30*Self(n-1)-29*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{30, -29}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218732(n):=(29^n-1)/28$
makelist(A218732(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
a(n)=29^n\28
A218733
a(n) = (30^n - 1)/29.
Original entry on oeis.org
0, 1, 31, 931, 27931, 837931, 25137931, 754137931, 22624137931, 678724137931, 20361724137931, 610851724137931, 18325551724137931, 549766551724137931, 16492996551724137931, 494789896551724137931, 14843696896551724137931, 445310906896551724137931, 13359327206896551724137931
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 31*Self(n-1) - 30*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{31, -30}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(30^Range[0,20]-1)/29 (* Harvey P. Dale, Nov 22 2022 *)
-
A218733(n):=floor((30^n-1)/29)$ makelist(A218733(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218733(n)=30^n\29
A218740
a(n) = (37^n - 1)/36.
Original entry on oeis.org
0, 1, 38, 1407, 52060, 1926221, 71270178, 2636996587, 97568873720, 3610048327641, 133571788122718, 4942156160540567, 182859777940000980, 6765811783780036261, 250335035999861341658, 9262396331994869641347, 342708664283810176729840, 12680220578500976539004081
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 38*Self(n-1)-37*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{38, -37}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218740(n):=(37^n-1)/36$
makelist(A218740(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218740(n)=37^n\36
A218744
a(n) = (41^n - 1)/40.
Original entry on oeis.org
0, 1, 42, 1723, 70644, 2896405, 118752606, 4868856847, 199623130728, 8184548359849, 335566482753810, 13758225792906211, 564087257509154652, 23127577557875340733, 948230679872888970054, 38877457874788447772215, 1593975772866326358660816, 65353006687519380705093457
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 42*Self(n-1)-41*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{42, -41}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218744(n):=(41^n-1)/40$
makelist(A218744(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218744(n)=41^n\40
A218746
a(n) = (43^n - 1)/42.
Original entry on oeis.org
0, 1, 44, 1893, 81400, 3500201, 150508644, 6471871693, 278290482800, 11966490760401, 514559102697244, 22126041415981493, 951419780887204200, 40911050578149780601, 1759175174860440565844, 75644532518998944331293, 3252714898316954606245600, 139866740627629048068560801
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 44*Self(n-1) - 43*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{44, -43}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
Join[{0},Accumulate[43^Range[0,20]]] (* Harvey P. Dale, Jan 27 2015 *)
-
A218746(n):=(43^n-1)/42$
makelist(A218746(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218746(n)=43^n\42
A353145
Decimal repunits written in base 6.
Original entry on oeis.org
0, 1, 15, 303, 5051, 123235, 2214223, 35452011, 1034052155, 15005255143, 302130544531, 5034313401115, 123013240420103, 2210234251121451, 35344212440150035, 1032151423443021023, 14535045221530334411, 301223205551110014555
Offset: 0
Comments