cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A190051 Expansion of (1-x)*(10*x^4-20*x^3+16*x^2-6*x+1)/(1-2*x)^5.

Original entry on oeis.org

1, 3, 12, 44, 150, 482, 1476, 4344, 12368, 34240, 92544, 244992, 636928, 1629696, 4111360, 10242048, 25227264, 61505536, 148570112, 355860480, 845807616, 1996095488, 4680056832, 10906763264, 25275924480, 58271465472
Offset: 0

Views

Author

Johannes W. Meijer, May 06 2011

Keywords

Comments

The third left hand column of triangle A175136.

Crossrefs

Related to A003472.

Programs

  • Magma
    [1] cat [(264 + 214*n + 14*n^3 + 83*n^2 + n^4)*2^(n-7)/3: n in [1..30]]; // G. C. Greubel, Jan 10 2018
  • Maple
    A190051:= proc(n) option remember; if n=0 then A190051(n):=1 else A190051(n):= (264+214*n+14*n^3+83*n^2+n^4)*2^(n-7)/3 fi: end: seq (A190051(n), n=0..25);
  • Mathematica
    Join[{1}, LinearRecurrence[{10,-40,80,-80,32}, {3,12,44,150,482}, 30]] (* or *) CoefficientList[Series[(1 - x)*(10*x^4 -20*x^3 +16*x^2 -6*x + 1)/(1 -2*x)^5, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x)*(10*x^4-20*x^3+16*x^2-6*x+1)/(1-2*x)^5) \\ G. C. Greubel, Jan 10 2018
    
  • PARI
    for(n=0,30, print1(if(n==0,1,(264 + 214*n + 14*n^3 + 83*n^2 + n^4)*2^(n-7)/3), ", ")) \\ G. C. Greubel, Jan 10 2018
    

Formula

G.f.: (1-x)*(10*x^4-20*x^3+16*x^2-6*x+1)/(1-2*x)^5.
a(n) = (264 + 214*n + 14*n^3 + 83*n^2 + n^4)*2^(n-7)/3 for n >=1 with a(0)=1.
a(n-4) = A003472(n) -7*A003472(n-1) +22*A003472(n-2) -36*A003472(n-3) +30*A003472(n-4) -10*A003472(n-5) for n>=5 with a(0) = 1.

A317495 Triangle read by rows: T(0,0) = 1; T(n,k) =2 * T(n-1,k) + T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 2, 4, 8, 1, 16, 4, 32, 12, 64, 32, 1, 128, 80, 6, 256, 192, 24, 512, 448, 80, 1, 1024, 1024, 240, 8, 2048, 2304, 672, 40, 4096, 5120, 1792, 160, 1, 8192, 11264, 4608, 560, 10, 16384, 24576, 11520, 1792, 60, 32768, 53248, 28160, 5376, 280, 1, 65536, 114688, 67584, 15360, 1120, 12
Offset: 0

Views

Author

Zagros Lalo, Jul 30 2018

Keywords

Comments

The numbers in rows of the triangle are along a "second layer" of skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along a "second layer" of skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2*x)^n and (2+x)^n are given in A128099 and A207538 respectively.)
The coefficients in the expansion of 1/(1-2x-x^3) are given by the sequence generated by the row sums.
The row sums give A008998 and Pisot sequences E(4,9), P(4,9) when n > 1, see A020708.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.205569430400..., when n approaches infinity.

Examples

			Triangle begins:
       1;
       2;
       4;
       8,      1;
      16,      4;
      32,     12;
      64,     32,      1;
     128,     80,      6;
     256,    192,     24;
     512,    448,     80,      1;
    1024,   1024,    240,      8;
    2048,   2304,    672,     40;
    4096,   5120,   1792,    160,     1;
    8192,  11264,   4608,    560,    10;
   16384,  24576,  11520,   1792,    60;
   32768,  53248,  28160,   5376,   280,   1;
   65536, 114688,  67584,  15360,  1120,  12;
  131072, 245760, 159744,  42240,  4032,  84;
  262144, 524288, 372736, 112640, 13440, 448, 1;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 358, 359.

Crossrefs

Row sums give A008998, A020708.
Cf. A000079 (column 0), A001787 (column 1), A001788 (column 2), A001789 (column 3), A003472 (column 4).

Programs

  • GAP
    Flat(List([0..20],n->List([0..Int(n/3)],k->2^(n-3*k)/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Jul 31 2018
    
  • Magma
    /* As triangle */ [[2^(n-3*k)/(Factorial(n-3*k)*Factorial(k))* Factorial(n-2*k): k in [0..Floor(n/3)]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 05 2018
  • Mathematica
    t[n_, k_] := t[n, k] = 2^(n - 3k)/((n - 3 k)! k!) (n - 2 k)!; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]} ]  // Flatten
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]}] // Flatten

Formula

T(n,k) = 2^(n - 3k) / ((n - 3k)! k!) * (n - 2k)! where n >= 0 and k = 0..floor(n/3).

A372868 Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k runs of weak ascents, with 1 <= k <= ceiling(n/2).

Original entry on oeis.org

1, 2, 4, 1, 8, 6, 16, 24, 1, 32, 80, 10, 64, 240, 60, 1, 128, 672, 280, 14, 256, 1792, 1120, 112, 1, 512, 4608, 4032, 672, 18, 1024, 11520, 13440, 3360, 180, 1, 2048, 28160, 42240, 14784, 1320, 22, 4096, 67584, 126720, 59136, 7920, 264, 1, 8192, 159744, 366080, 219648, 41184, 2288, 26
Offset: 1

Views

Author

Stefano Spezia, May 15 2024

Keywords

Comments

With offset 0 for the variable k, T(n,k) is the number of flattened Catalan words of length n with exactly k peaks. In such case, T(4,1) = 6 corresponds to 6 flattened Catalan words of length 4 with 1 peak: 0010, 0100, 0110, 0101, 0120, and 0121. See Baril et al. at page 20.

Examples

			The irregular triangle begins:
    1;
    2;
    4,    1;
    8,    6;
   16,   24,    1;
   32,   80,   10;
   64,  240,   60,   1;
  128,  672,  280,  14;
  256, 1792, 1120, 112, 1;
  ...
T(4,2) = 6 since there are 6 flattened Catalan words of length 4 with 2 runs of weak ascents: 0010, 0100, 0101, 0110, 0120, and 0121.
		

Crossrefs

Cf. A000079, A001788, A002409, A003472, A007051 (row sums), A110654 (row lengths), A140325, A172242.

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[(1-2x)*x*y/(1-4*x+4*x^2-x^2*y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,14},{k,Ceiling[n/2]}] //Flatten (* or *)
    T[n_,k_]:=2^(n-2k+1)Binomial[n-1,2k-2]; Table[T[n,k],{n,14},{k,Ceiling[n/2]}]

Formula

G.f.: (1-2*x)*x*y/(1 - 4*x + 4*x^2 - x^2*y).
T(n,k) = 2^(n-2*k+1)*binomial(n-1, 2*k-2).
T(n,1) = A000079(n-1).
T(n,2) = A001788(n-2).
T(n,3) = A003472(n-1).
T(n,4) = A002409(n-7).
T(n,5) = A140325(n-9).
T(n,6) = A172242(n-1).
Sum_{k>=0} T(n,k) = A007051(n-1).

A130749 Triangle A007318*A090181 (as infinite lower triangular matrices) .

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 24, 10, 1, 1, 31, 80, 60, 15, 1, 1, 63, 240, 280, 125, 21, 1, 1, 127, 672, 1120, 770, 231, 28, 1, 1, 255, 1792, 4032, 3920, 1806, 392, 36, 1, 1, 511, 4608, 13440, 17472, 11340, 3780, 624, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Jul 13 2007

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    6,     1;
  1,  15,   24,    10,     1;
  1,  31,   80,    60,    15,     1;
  1,  63,  240,   280,   125,    21,    1;
  1, 127,  672,  1120,   770,   231,   28,   1;
  1, 255, 1792,  4032,  3920,  1806,  392,  36,  1;
  1, 511, 4608, 13440, 17472, 11340, 3780, 624, 45,  1;
  ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 9;
    T1[n_, k_] := Binomial[n, k];
    T2[n_, k_] := Sum[(-1)^(j-k) Binomial[2n-j, j] Binomial[j, k] CatalanNumber[n-j], {j, 0, n}];
    T[n_, k_] := Sum[T1[n, m] T2[m, k], {m, 0, n}];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
  • Maxima
    N(n, k):=(binomial(n, k-1)*binomial(n, k))/n;
    T(n, k):=if k=0 then 1 else sum(binomial(n, i)*N(i, k), i, 1, n); /* Vladimir Kruchinin, Jan 08 2022 */

Formula

Sum_{k=0..n} T(n,k) = A007317(n+1).
G.f.: 1/(1-x-xy/(1-x/(1-x-xy/(1-x/(1-x-xy/(1-x.... (continued fraction); [Paul Barry, Jan 12 2009]
T(n,k) = Sum_{i=1..n} binomial(n, i)*N(i,k), T(n,0)=1, where N(n,k) is the triangle of Narayana numbers A001263. - Vladimir Kruchinin, Jan 08 2022

A130813 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 7-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

128, 1024, 4608, 15360, 42240, 101376, 219648, 439296, 823680, 1464320, 2489344, 4073472, 6449664, 9922560, 14883840, 21829632, 31380096, 44301312, 61529600, 84198400, 113667840, 151557120, 199779840, 260582400, 336585600, 430829568
Offset: 7

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=7) of 3 objects u,v,z, with repetition allowed, containing n-7 u's. Example: if n=7 then n-7 =(0) zero u, a(1)=128. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 6-dimensional elements in an n-cross polytope where n>=7. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(n,n-7)*2^7: n in [7..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,7)+binomial(n,2)*binomial(2*n-4,3)-n*binomial(2*n-2,5)-(2*n-6)*binomial(n,3);
    seq(binomial(n,n-7)*2^7,n=7..32); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+6, 7)*2^7, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    Table[Binomial[n, n - 7] 2^7, {n, 7, 40}] (* Vincenzo Librandi, Jul 09 2015 *)

Formula

a(n) = binomial(2*n,7) + binomial(n,2)*binomial(2*n-4,3) - n*binomial(2*n-2,5) - (2*n-6)*binomial(n,3).
a(n) = C(n,n-7)*2^7, n>=7. - Zerinvary Lajos, Dec 07 2007
G.f.: 128*x^7/(1-x)^8. - Colin Barker, Mar 18 2012
a(n) = 128*A000580(n). a(n+1) = 2*(n+1)*a(n)/(n-6) for n >= 7. - Robert Israel, Jul 08 2015

A213432 a(n) = 2^(n-3)*binomial(n,4).

Original entry on oeis.org

0, 0, 0, 0, 2, 20, 120, 560, 2240, 8064, 26880, 84480, 253440, 732160, 2050048, 5591040, 14909440, 38993920, 100270080, 254017536, 635043840, 1568931840, 3835166720, 9285140480, 22284337152, 53057945600, 125409689600, 294440140800, 687026995200, 1593902628864, 3678236835840, 8446321623040, 19305877995520, 43937515438080, 99591701659648
Offset: 0

Views

Author

N. J. A. Sloane, Jun 11 2012

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Programs

  • Mathematica
    A213432[n_] := 2^(n-3)*Binomial[n, 4]; Array[A213432, 35, 0] (* or *)
    LinearRecurrence[{10, -40, 80, -80, 32}, {0, 0, 0, 0, 2}, 35] (* Paolo Xausa, Feb 22 2024 *)

Formula

G.f.: -2*x^4 / (2*x-1)^5. - Colin Barker, Jul 22 2013
a(n) = 2*A003472(n). - R. J. Mathar, Jun 18 2014
Previous Showing 21-26 of 26 results.