A190051
Expansion of (1-x)*(10*x^4-20*x^3+16*x^2-6*x+1)/(1-2*x)^5.
Original entry on oeis.org
1, 3, 12, 44, 150, 482, 1476, 4344, 12368, 34240, 92544, 244992, 636928, 1629696, 4111360, 10242048, 25227264, 61505536, 148570112, 355860480, 845807616, 1996095488, 4680056832, 10906763264, 25275924480, 58271465472
Offset: 0
-
[1] cat [(264 + 214*n + 14*n^3 + 83*n^2 + n^4)*2^(n-7)/3: n in [1..30]]; // G. C. Greubel, Jan 10 2018
-
A190051:= proc(n) option remember; if n=0 then A190051(n):=1 else A190051(n):= (264+214*n+14*n^3+83*n^2+n^4)*2^(n-7)/3 fi: end: seq (A190051(n), n=0..25);
-
Join[{1}, LinearRecurrence[{10,-40,80,-80,32}, {3,12,44,150,482}, 30]] (* or *) CoefficientList[Series[(1 - x)*(10*x^4 -20*x^3 +16*x^2 -6*x + 1)/(1 -2*x)^5, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
-
x='x+O('x^30); Vec((1-x)*(10*x^4-20*x^3+16*x^2-6*x+1)/(1-2*x)^5) \\ G. C. Greubel, Jan 10 2018
-
for(n=0,30, print1(if(n==0,1,(264 + 214*n + 14*n^3 + 83*n^2 + n^4)*2^(n-7)/3), ", ")) \\ G. C. Greubel, Jan 10 2018
A317495
Triangle read by rows: T(0,0) = 1; T(n,k) =2 * T(n-1,k) + T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 2, 4, 8, 1, 16, 4, 32, 12, 64, 32, 1, 128, 80, 6, 256, 192, 24, 512, 448, 80, 1, 1024, 1024, 240, 8, 2048, 2304, 672, 40, 4096, 5120, 1792, 160, 1, 8192, 11264, 4608, 560, 10, 16384, 24576, 11520, 1792, 60, 32768, 53248, 28160, 5376, 280, 1, 65536, 114688, 67584, 15360, 1120, 12
Offset: 0
Triangle begins:
1;
2;
4;
8, 1;
16, 4;
32, 12;
64, 32, 1;
128, 80, 6;
256, 192, 24;
512, 448, 80, 1;
1024, 1024, 240, 8;
2048, 2304, 672, 40;
4096, 5120, 1792, 160, 1;
8192, 11264, 4608, 560, 10;
16384, 24576, 11520, 1792, 60;
32768, 53248, 28160, 5376, 280, 1;
65536, 114688, 67584, 15360, 1120, 12;
131072, 245760, 159744, 42240, 4032, 84;
262144, 524288, 372736, 112640, 13440, 448, 1;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 358, 359.
-
Flat(List([0..20],n->List([0..Int(n/3)],k->2^(n-3*k)/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Jul 31 2018
-
/* As triangle */ [[2^(n-3*k)/(Factorial(n-3*k)*Factorial(k))* Factorial(n-2*k): k in [0..Floor(n/3)]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 05 2018
-
t[n_, k_] := t[n, k] = 2^(n - 3k)/((n - 3 k)! k!) (n - 2 k)!; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]}] // Flatten
A372868
Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k runs of weak ascents, with 1 <= k <= ceiling(n/2).
Original entry on oeis.org
1, 2, 4, 1, 8, 6, 16, 24, 1, 32, 80, 10, 64, 240, 60, 1, 128, 672, 280, 14, 256, 1792, 1120, 112, 1, 512, 4608, 4032, 672, 18, 1024, 11520, 13440, 3360, 180, 1, 2048, 28160, 42240, 14784, 1320, 22, 4096, 67584, 126720, 59136, 7920, 264, 1, 8192, 159744, 366080, 219648, 41184, 2288, 26
Offset: 1
The irregular triangle begins:
1;
2;
4, 1;
8, 6;
16, 24, 1;
32, 80, 10;
64, 240, 60, 1;
128, 672, 280, 14;
256, 1792, 1120, 112, 1;
...
T(4,2) = 6 since there are 6 flattened Catalan words of length 4 with 2 runs of weak ascents: 0010, 0100, 0101, 0110, 0120, and 0121.
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See pp. 8-9.
-
T[n_,k_]:=SeriesCoefficient[(1-2x)*x*y/(1-4*x+4*x^2-x^2*y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,14},{k,Ceiling[n/2]}] //Flatten (* or *)
T[n_,k_]:=2^(n-2k+1)Binomial[n-1,2k-2]; Table[T[n,k],{n,14},{k,Ceiling[n/2]}]
A130749
Triangle A007318*A090181 (as infinite lower triangular matrices) .
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 24, 10, 1, 1, 31, 80, 60, 15, 1, 1, 63, 240, 280, 125, 21, 1, 1, 127, 672, 1120, 770, 231, 28, 1, 1, 255, 1792, 4032, 3920, 1806, 392, 36, 1, 1, 511, 4608, 13440, 17472, 11340, 3780, 624, 45, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 6, 1;
1, 15, 24, 10, 1;
1, 31, 80, 60, 15, 1;
1, 63, 240, 280, 125, 21, 1;
1, 127, 672, 1120, 770, 231, 28, 1;
1, 255, 1792, 4032, 3920, 1806, 392, 36, 1;
1, 511, 4608, 13440, 17472, 11340, 3780, 624, 45, 1;
...
-
nmax = 9;
T1[n_, k_] := Binomial[n, k];
T2[n_, k_] := Sum[(-1)^(j-k) Binomial[2n-j, j] Binomial[j, k] CatalanNumber[n-j], {j, 0, n}];
T[n_, k_] := Sum[T1[n, m] T2[m, k], {m, 0, n}];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
-
N(n, k):=(binomial(n, k-1)*binomial(n, k))/n;
T(n, k):=if k=0 then 1 else sum(binomial(n, i)*N(i, k), i, 1, n); /* Vladimir Kruchinin, Jan 08 2022 */
A130813
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 7-subsets of X containing none of X_i, (i=1,...n).
Original entry on oeis.org
128, 1024, 4608, 15360, 42240, 101376, 219648, 439296, 823680, 1464320, 2489344, 4073472, 6449664, 9922560, 14883840, 21829632, 31380096, 44301312, 61529600, 84198400, 113667840, 151557120, 199779840, 260582400, 336585600, 430829568
Offset: 7
Cf.
A038207,
A000079,
A001787,
A001788,
A001789,
A003472,
A054849,
A002409,
A054851,
A140325,
A140354,
A046092,
A130809,
A130810,
A130811,
A130812. -
Zerinvary Lajos, Aug 05 2008
-
[Binomial(n,n-7)*2^7: n in [7..40]]; // Vincenzo Librandi, Jul 09 2015
-
a:=n->binomial(2*n,7)+binomial(n,2)*binomial(2*n-4,3)-n*binomial(2*n-2,5)-(2*n-6)*binomial(n,3);
seq(binomial(n,n-7)*2^7,n=7..32); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+6, 7)*2^7, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
Table[Binomial[n, n - 7] 2^7, {n, 7, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
A213432
a(n) = 2^(n-3)*binomial(n,4).
Original entry on oeis.org
0, 0, 0, 0, 2, 20, 120, 560, 2240, 8064, 26880, 84480, 253440, 732160, 2050048, 5591040, 14909440, 38993920, 100270080, 254017536, 635043840, 1568931840, 3835166720, 9285140480, 22284337152, 53057945600, 125409689600, 294440140800, 687026995200, 1593902628864, 3678236835840, 8446321623040, 19305877995520, 43937515438080, 99591701659648
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
-
A213432[n_] := 2^(n-3)*Binomial[n, 4]; Array[A213432, 35, 0] (* or *)
LinearRecurrence[{10, -40, 80, -80, 32}, {0, 0, 0, 0, 2}, 35] (* Paolo Xausa, Feb 22 2024 *)
Comments