A214849 Number of n-permutations having all cycles of odd length and at most one fixed point.
1, 1, 0, 2, 8, 24, 184, 1000, 8448, 66752, 670976, 6771456, 80540800, 981684352, 13555365888, 193136762624, 3042586824704, 49558509465600, 877951349198848, 16081833643651072, 316609129672114176, 6439690754082062336, 139521103623589068800
Offset: 0
Keywords
Examples
a(6)= 184 because we have 144 6-permutations of the type (1,2,3,4,5)(6) and 40 of the type (1,2,3)(4,5,6). These have exactly one square root: (1,4,2,5,3)(6) and (1,3,2)(4,6,5).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
nn=22; Range[0,nn]! CoefficientList[Series[(1+x)((1+x)/(1-x))^(1/2) Exp[-x], {x,0,nn}], x]
Formula
E.g.f.: (1 + x)*((1+x)/(1-x))^(1/2)*exp(-x).
a(n) ~ 4*n^n/exp(n+1). - Vaclav Kotesovec, Oct 08 2013
Comments