cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A145598 Triangular array of generalized Narayana numbers: T(n, k) = 4*binomial(n+1, k+3)*binomial(n+1, k-1)/(n+1).

Original entry on oeis.org

1, 4, 4, 10, 24, 10, 20, 84, 84, 20, 35, 224, 392, 224, 35, 56, 504, 1344, 1344, 504, 56, 84, 1008, 3780, 5760, 3780, 1008, 84, 120, 1848, 9240, 19800, 19800, 9240, 1848, 120, 165, 3168, 20328, 58080, 81675, 58080, 20328, 3168, 165, 220, 5148, 41184, 151008
Offset: 3

Views

Author

Peter Bala, Oct 15 2008

Keywords

Comments

T(n,k) is the number of walks of n unit steps, each step in the direction either up (U), down (D), right (R) or left (L), starting from (0,0) and finishing at lattice points on the horizontal line y = 3 and which remain in the upper half-plane y >= 0. An example is given in the Example section below.
The current array is the case r = 3 of the generalized Narayana numbers N_r(n,k) := (r + 1)/(n + 1)*binomial(n + 1,k + r)*binomial(n + 1,k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with an offset of 0 in the row numbering). For other cases see A145596 (r = 1), A145597 (r = 2) and A145599 (r = 4).

Examples

			Triangle starts
  n\k|  1     2     3     4     5     6
  =====================================
   3 |  1
   4 |  4     4
   5 | 10    24    10
   6 | 20    84    84    20
   7 | 35   224   392   224    35
   8 | 56   504  1344  1344   504    56
  ...
Row 5: T(5,3) = 10: the 10 walks of length 5 from (0,0) to (2,3) are UUURR, UURUR, UURRU, URUUR, URURU, URRUU, RUUUR, RUURU, RURUU and RRUUU.
*
*......*......*......y......*......*......*
.
.
*.....10......*.....24......*.....10......*
.
.
*......*......*......*......*......*......*
.
.
*......*......*......*......*......*......*
.
.
*......*......*......o......*......*......* x axis
.
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> 4/(n+1)*binomial(n+1,k+3)*binomial(n+1,k-1):
    for n from 3 to 12 do seq(T(n, k), k = 1 .. n-2) end do;

Formula

T(n,k) = 4/(n+1)*binomial(n+1,k+3)*binomial(n+1,k-1) for n >=3 and 1 <= k <= n-2. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n + 1,3). Row sums A003518.
O.g.f. for column k+2: 4/(k + 1) * y^(k+4)/(1 - y)^(k+6) * Jacobi_P(k,4,1,(1 + y)/(1 - y)).
Identities for row polynomials R_n(x) = Sum_{k = 1 .. n - 2} T(n,k)*x^k:
x^3*R_(n-1)(x) = 4*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)*(n + 4)) * Sum_{k = 0..n} binomial(n + 4,k) * binomial(2n - k,n) * (x - 1)^k;
Sum_{k = 1..n} (-1)^(k+1)*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n-1) = A003518(n)*x^(n-1).
Row generating polynomial R_(n+3)(x) = 4/(n+4)*x*(1-x)^n * Jacobi_P(n,4,4,(1+x)/(1-x)). - Peter Bala, Oct 31 2008
G.f.: A(x) = x*A145596(x)^2. - Vladimir Kruchinin, Oct 09 2020

A090749 a(n) = 12 * C(2n+1,n-5) / (n+7).

Original entry on oeis.org

1, 12, 90, 544, 2907, 14364, 67298, 303600, 1332045, 5722860, 24192090, 100975680, 417225900, 1709984304, 6962078952, 28192122176, 113649492522, 456442180920, 1827459250276, 7297426411968, 29075683360185, 115631433392020, 459124809056550, 1820529677650320, 7210477496434485
Offset: 5

Views

Author

Philippe Deléham, Feb 15 2004

Keywords

Comments

Also a diagonal of A059365 and A009766. See also A000108, A002057, A003517, A003518, A003519.
Number of standard tableaux of shape (n+6,n-5). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

  • Mathematica
    Table[12*Binomial[2*n + 1, n - 5]/(n + 7), {n,5,50}] (* G. C. Greubel, Feb 07 2017 *)
  • PARI
    for(n=5,50, print1(12*binomial(2*n+1,n-5)/(n+7), ", ")) \\ G. C. Greubel, Feb 07 2017

Formula

a(n) = A039598(n, 5) = A033184(n+7, 12).
G.f.: x^5*C(x)^12 with C(x) g.f. of A000108(Catalan).
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=11, a(n-6)=(-1)^(n-11)*coeff(charpoly(A,x),x^11). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-6) for n > 5. - Reinhard Zumkeller, Jul 12 2012
From Karol A. Penson, Nov 21 2016: (Start)
O.g.f.: z^5 * 4^6/(1+sqrt(1-4*z))^12.
Recurrence: (-4*(n-5)^2-58*n+80)*a(n+1)-(-n^2-6*n+27)*a(n+2)=0, a(0),a(1),a(2),a(3),a(4)=0,a(5)=1,a(6)=12, n>=5.
Asymptotics: (-903+24*n)*4^n*sqrt(1/n)/(sqrt(Pi)*n^2).
Integral representation as n-th moment of a signed function W(x) on x=(0,4),in Maple notation: a(n+5)=int(x^n*W(x),x=0..4),n=0,1,..., where W(x)=(256/231)*sqrt(4-x)*JacobiP(5, 1/2, 1/2, (1/2)*x-1)*x^(11/2)/Pi and JacobiP are Jacobi polynomials. Note that W(0)=W(4)=0. (End).
From Ilya Gutkovskiy, Nov 21 2016: (Start)
E.g.f.: 6*exp(2*x)*BesselI(6,2*x)/x.
a(n) ~ 3*2^(2*n+3)/(sqrt(Pi)*n^(3/2)). (End)
From Amiram Eldar, Sep 26 2022: (Start)
Sum_{n>=5} 1/a(n) = 88699/15120 - 71*Pi/(27*sqrt(3)).
Sum_{n>=5} (-1)^(n+1)/a(n) = 102638*log(phi)/(75*sqrt(5)) - 22194839/75600, where phi is the golden ratio (A001622). (End)

Extensions

Missing term 113649492522 inserted by Ilya Gutkovskiy, Dec 07 2016

A026018 a(n) = number of (s(0), s(1), ..., s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 2, s(2n-1) = 7. Also a(n) = T(2n-1,n-3), where T is the array defined in A026009.

Original entry on oeis.org

1, 7, 36, 164, 702, 2898, 11696, 46512, 183141, 716243, 2788060, 10817820, 41880930, 161900910, 625272480, 2413491360, 9313307370, 35936613414, 138680365704, 535290282632, 2066802226236, 7983111461732, 30848211650592
Offset: 3

Views

Author

Keywords

Crossrefs

First differences if A003518.

Formula

Conjecture: -(n+5)*(3*n-37)*a(n) +3*(-n^2-84*n-173)*a(n-1) +2*(32*n^2+295*n+254)*a(n-2) -8*(n+25)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Jun 20 2013

A107842 A number triangle of lattice walks.

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 14, 20, 8, 1, 42, 75, 44, 11, 1, 132, 275, 208, 77, 14, 1, 429, 1001, 910, 440, 119, 17, 1, 1430, 3640, 3808, 2244, 798, 170, 20, 1, 4862, 13260, 15504, 10659, 4655, 1309, 230, 23, 1, 16796, 48450, 62016, 48279, 24794, 8602, 2000, 299, 26, 1
Offset: 0

Views

Author

Paul Barry, May 24 2005

Keywords

Comments

First column is A000108(n+1). Columns include A000344, A003518 and A000589. Row sums are A026671. Compare [1,1,1,...] DELTA [0,1,0,0,...] where DELTA is the operator defined in A084938.
Transposed version in A109450. - Philippe Deléham, Jun 05 2007

Examples

			Triangle begins
   1;
   2,  1;
   5,  5,  1;
  14, 20,  8,  1;
  42, 75, 44, 11,  1;
Triangle [1,1,1,1,1,...] DELTA [0,1,0,0,0,0,...] begins:
    1;
    1,   0;
    2,   1,   0;
    5,   5,   1,   0;
   14,  20,   8,   1,   0;
   42,  75,  44,  11,   1,   0;
  132, 275, 208,  77,  14,   1,   0; ...
		

Formula

Number triangle T(n, k) = (3k+2)*C(2n+k+1, n-k)/(n+2k+2).
Column k has g.f.: x^k*C(x)^(3k+2) where C(x) is the g.f. of A000108.

A109450 Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 8, 20, 14, 0, 1, 11, 44, 75, 42, 0, 1, 14, 77, 208, 275, 132, 0, 1, 17, 119, 440, 910, 1001, 429, 0, 1, 20, 170, 798, 2244, 3808, 3640, 1430, 0, 1, 23, 230, 1309, 4655, 10659, 15504, 13260, 4862, 0, 1, 26, 299, 2000
Offset: 0

Views

Author

Philippe Deléham, Aug 26 2005

Keywords

Comments

Row sums : 1, 1, 3, 11, 43, 173, .... (see A026671).
Transposed version in A107842.

Examples

			Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 8, 20, 14;
0, 1, 11, 44, 75, 42;
0, 1, 14, 77, 208, 275, 132
		

Crossrefs

Formula

T(0, 0) = 1, T(n, 0) = 0 if n>0, T(n, k) = 0 if k>n, T(n, k) = (3n-3k+2)*binomial(3n-k-1, k-1)/(3n-2k+1).
T(n, n) = A000108(n), Catalan numbers.
Previous Showing 21-25 of 25 results.