A145599 Triangular array of generalized Narayana numbers: T(n,k) = 5/(n+1)*binomial(n+1,k+4)*binomial(n+1,k-1).
1, 5, 5, 15, 35, 15, 35, 140, 140, 35, 70, 420, 720, 420, 70, 126, 1050, 2700, 2700, 1050, 126, 210, 2310, 8250, 12375, 8250, 2310, 210, 330, 4620, 21780, 45375, 45375, 21780, 4620, 330, 495, 8580, 51480, 141570, 196625, 141570, 51480, 8580, 495, 715, 15015
Offset: 4
Examples
Triangle starts n\k|...1......2......3......4......5......6 =========================================== .4.|...1 .5.|...5......5 .6.|..15.....35.....15 .7.|..35....140....140.....35 .8.|..70....420....720....420.....70 .9.|.126...1050...2700...2700...1050....126 ... T(5,2) = 5: the 5 walks of length 5 from (0,0) to (1,4) are UUUUR, UUURU, UURUU, URUUU and RUUUU.
Links
- F. Cai, Q.-H. Hou, Y. Sun, A. L. B. Yang, Combinatorial identities related to 2x2 submatrices of recursive matrices, arXiv:1808.05736 Table 2.1 for k=4.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
Programs
-
Maple
with(combinat): T:= (n,k) -> 5/(n+1)*binomial(n+1,k+4)*binomial(n+1,k-1): for n from 4 to 13 do seq(T(n,k),k = 1..n-3); end do;
-
Mathematica
Table[5/(n+1) Binomial[n+1,k+4]Binomial[n+1,k-1],{n,4,20},{k,0,n}]/.(0-> Nothing)//Flatten (* Harvey P. Dale, Jan 25 2021 *)
Formula
T(n,k) = 5/(n+1)*binomial(n+1,k+4)*binomial(n+1,k-1) for n >=4 and 1 <= k <= n-3. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n + 2,4). Row sums A003519.
O.g.f. for column k+2: 5/(k + 1) * y^(k+5)/(1 - y)^(k+7) * Jacobi_P(k,5,1,(1 + y)/(1 - y)).
Identities for row polynomials R_n(x) := sum {k = 1..n-3} T(n,k)*x^k:
x^4*R_(n-1)(x) = 5*(n - 1)*(n - 2)*(n - 3)*(n - 4)/((n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)) * sum {k = 0..n} binomial(n + 5,k) * binomial(2n - k,n) * (x - 1)^k;
sum {k = 1..n} (-1)^k*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n-2) = A003519(n)*x^(n-2).
Row generating polynomial R_(n+4)(x) = 5/(n+5)*x*(1-x)^n * Jacobi_P(n,5,5,(1+x)/(1-x)). [From Peter Bala, Oct 31 2008]
Comments