cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 345 results. Next

A351260 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A003557(i) = A003557(j) and A046523(i) = A046523(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 47, 56, 2, 57, 58, 59, 2, 60, 41, 61, 62, 63, 2, 64, 37, 65, 66, 67, 68, 69, 2, 70, 71, 72, 2, 73, 2, 74, 56
Offset: 1

Views

Author

Antti Karttunen, Feb 06 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A003415(n), A003557(n), A046523(n)].
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A294877(i) = A294877(j),
a(i) = a(j) => A300249(i) = A300249(j),
a(i) = a(j) => A344025(i) = A344025(j).

Crossrefs

Differs from A300235, A305895 and A327931 for the first time at n=105, where a(105) = 56, while A300235(105) = A305895(105) = A327931(105) = 75.
Differs from A300249 for the first time at n=425, where a(425) = 299, while A300249(425) = 198.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux351260(n) = [A003415(n), A003557(n), A046523(n)];
    v351260 = rgs_transform(vector(up_to,n,Aux351260(n)));
    A351260(n) = v351260[n];

A353520 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A003557(i) = A003557(j) and A053669(i) = A053669(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 29, 41, 42, 43, 3, 44, 3, 45, 46, 47, 48, 49, 3, 50, 51, 52, 3, 53, 3, 54, 55, 56, 48, 57, 3, 58, 59, 60, 3, 61, 42, 62, 63, 64, 3, 65, 38
Offset: 1

Views

Author

Antti Karttunen, Apr 25 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A003415(n), A003557(n), A053669(n)].
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A344025(i) = A344025(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A053669(n) = forprime(p=2, , if(n%p, return(p))); \\ From A053669
    Aux353520(n) = [A003415(n), A003557(n), A053669(n)];
    v353520 = rgs_transform(vector(up_to,n,Aux353520(n)));
    A353520(n) = v353520[n];

A353571 Prime-shifted variant of A342001: a(n) = A349905(n) / A003557(A003961(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 8, 1, 3, 2, 10, 1, 13, 1, 14, 12, 4, 1, 11, 1, 17, 16, 16, 1, 18, 2, 20, 3, 25, 1, 71, 1, 5, 18, 22, 18, 16, 1, 26, 22, 24, 1, 103, 1, 29, 19, 32, 1, 23, 2, 13, 24, 37, 1, 14, 20, 36, 28, 34, 1, 106, 1, 40, 27, 6, 24, 119, 1, 41, 34, 131, 1, 21, 1, 44, 17, 49, 24, 151, 1, 31, 4, 46, 1, 158, 26, 50, 36
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A353571(n) = { my(s=A003961(n)); (A003415(s)/A003557(s)); };

Formula

a(n) = A342001(A003961(n)) = A349905(n) / A003557(A003961(n)).
For all n >= 1, a(n) >= A342001(n).

A317935 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A003557, n divided by largest squarefree divisor of n.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 25, 11, 1, 1, 7, 1, 1, 1, 363, 1, 11, 1, 7, 1, 1, 1, 25, 19, 1, 61, 7, 1, 1, 1, 1335, 1, 1, 1, 77, 1, 1, 1, 25, 1, 1, 1, 7, 11, 1, 1, 363, 27, 19, 1, 7, 1, 61, 1, 25, 1, 1, 1, 7, 1, 1, 11, 9923, 1, 1, 1, 7, 1, 1, 1, 275, 1, 1, 19, 7, 1, 1, 1, 363, 1363, 1, 1, 7, 1, 1, 1, 25, 1, 11, 1, 7, 1, 1, 1, 1335, 1, 27, 11, 133, 1, 1, 1, 25, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

Multiplicative because A003557 is.
No negative terms among the first 2^20 terms. Is the sequence nonnegative?

Crossrefs

Cf. A003557, A046644 (denominators).
Cf. also A300717, A300719, A318317.

Programs

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A003557(n) - Sum_{d|n, d>1, d 1.

A322321 a(n) = lcm(A003557(n), A173557(n)).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 2, 12, 6, 8, 8, 16, 6, 18, 4, 12, 10, 22, 4, 20, 12, 18, 6, 28, 8, 30, 16, 20, 16, 24, 6, 36, 18, 24, 4, 40, 12, 42, 10, 24, 22, 46, 8, 42, 20, 32, 12, 52, 18, 40, 12, 36, 28, 58, 8, 60, 30, 12, 32, 48, 20, 66, 16, 44, 24, 70, 12, 72, 36, 40, 18, 60, 24, 78, 8, 54, 40, 82, 12, 64, 42, 56, 20
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, LCM[ Times@@ (First[#] ^(Last[#]-1)& /@  f), Times@@((#-1)& @@@ f)]]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A322321(n) = lcm(A003557(n), A173557(n));

Formula

a(n) = lcm(A003557(n), A173557(n)) = lcm(A322351(n), A322352(n)).
a(n) = A000010(n) / A322320(n).

A323368 Lexicographically earliest sequence such that a(i) = a(j) => A000035(i) = A000035(j) and A003557(i) = A003557(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 51, 69, 70, 71, 58, 72, 73, 74, 75, 76, 77, 78, 79, 54, 80, 59, 75, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A296089(i) = A296089(j),
a(i) = a(j) => A323238(i) = A323238(j).

Crossrefs

Differs from A296089 for the first time at n=103, where a(103)=88, while A296089(103)=56.
Cf. also A323366.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    v323368 = rgs_transform(vector(up_to, n, [(n%2), A003557(n), A048250(n)]));
    A323368(n) = v323368[n];

A323372 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => A003557(i) = A003557(j) and A323363(i) = A323363(j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 29, 65, 66, 67, 68, 69, 58, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 79
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

Restricted growth sequence transform of ordered pair [A003557(n), A323363(n)].
For all i, j:
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A323364(i) = A323364(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ From A001615
    v323363 = DirInverse(vector(up_to,n,A001615(n)));
    A323363(n) = v323363[n];
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    v323372 = rgs_transform(vector(up_to, n, [A003557(n), A323363(n)]));
    A323372(n) = v323372[n];

A323405 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A003557(n), A023900(n), A063994(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 26, 29, 3, 30, 3, 31, 32, 33, 3, 34, 35, 36, 37, 38, 3, 39, 40, 41, 42, 43, 3, 44, 3, 45, 46, 47, 48, 49, 3, 50, 51, 52, 3, 53, 3, 54, 55, 56, 57, 58, 3, 59, 60, 61, 3, 62, 63, 64, 65, 66, 3, 67, 68, 69, 57, 70, 71, 72, 3, 73, 74, 75, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A323371(i) = A323371(j),
a(i) = a(j) => A247074(i) = A247074(j).

Crossrefs

Differs from A323370 for the first time at n=78, where a(78) = 58, while A323370(78) = 52.
Cf. also A323374.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); }; \\ From A063994
    Aux323405(n) = if((n>2)&&isprime(n),0,[A003557(n), A023900(n), A063994(n)]);
    v323405 = rgs_transform(vector(up_to, n, Aux323405(n)));
    A323405(n) = v323405[n];

A335341 Sum of divisors of A003557(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 7, 4, 1, 1, 3, 1, 1, 1, 15, 1, 4, 1, 3, 1, 1, 1, 7, 6, 1, 13, 3, 1, 1, 1, 31, 1, 1, 1, 12, 1, 1, 1, 7, 1, 1, 1, 3, 4, 1, 1, 15, 8, 6, 1, 3, 1, 13, 1, 7, 1, 1, 1, 3, 1, 1, 4, 63, 1, 1, 1, 3, 1, 1, 1, 28, 1, 1, 6, 3, 1, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Jun 02 2020

Keywords

Comments

The sum of the divisors d of n such that n/d is a coreful divisor of n (a coreful divisor of n is a divisor with the same squarefree kernel as n). The number of these divisors is A005361(n). - Amiram Eldar, Jun 30 2023

Crossrefs

Cf. A000203, A003557, A005361 (number of divisors of A003557), A336567.

Programs

  • Maple
    A335341 := proc(n)
        local a,pe,p,e ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if e > 1 then
                a := a*(p^e-1)/(p-1) ;
            end if;
        end do:
        a ;
    end proc:
  • Mathematica
    f[p_, e_] := (p^e-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    a(n) = sigma(n/factorback(factor(n)[, 1])); \\ Michel Marcus, Jun 02 2020

Formula

a(n) = A000203(A003557(n)).
Multiplicative with a(p^1)=1 and a(p^e) = (p^e-1)/(p-1) if e>1.
A057723(n) = A007947(n)*a(n).
a(n) = 1 iff n in A005117.
a(n) = A336567(n) + A003557(n). - Antti Karttunen, Jul 28 2020
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 09 2023
a(n) = A047994(n)/A173557(n). - Ridouane Oudra, Oct 30 2023

A341998 Arithmetic derivative of n divided by its largest squarefree divisor: a(n) = A003557(A003415(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 8, 1, 3, 4, 16, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 9, 16, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 8, 2, 1, 1, 1, 8, 1, 5, 1, 8, 1, 3, 2, 4, 1, 27, 8, 2, 1, 1, 1, 2, 1, 1, 1, 32, 3, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 8, 3, 1, 1, 8, 18, 1, 1, 2, 1, 3, 16, 2, 1, 1, 2, 16, 1, 7, 4, 8, 1, 1, 5, 2, 1, 1, 1, 2, 1
Offset: 2

Views

Author

Antti Karttunen, Feb 28 2021

Keywords

Crossrefs

Cf. A328393 (positions of ones), A328303 (after its two initial terms, gives the positions of terms > 1).

Programs

  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A341998(n) = if(n<=1,1,A003557(A003415(n)));

Formula

a(n) = A003557(A003415(n)).
Previous Showing 21-30 of 345 results. Next