cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A108687 Numbers of the form (9^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 9, 11, 81, 99, 121, 729, 891, 1089, 1331, 6561, 8019, 9801, 11979, 14641, 59049, 72171, 88209, 107811, 131769, 161051, 531441, 649539, 793881, 970299, 1185921, 1449459, 1771561, 4782969, 5845851, 7144929, 8732691, 10673289, 13045131
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 17 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108687 n = a108687_list !! (n-1)
    a108687_list = f $ singleton (1,0,0) where
       f s = y : f (insert (9 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Mathematica
    f[upto_]:=With[{max9=Floor[Log[9,upto]],max11=Floor[Log[11,upto]]}, Select[Union[Times@@{9^First[#],11^Last[#]}&/@Tuples[{Range[0, max9], Range[0, max11]}]], #<=upto&]]; f[14000000]  (* Harvey P. Dale, Mar 11 2011 *)
  • Python
    from sympy import integer_log
    def A108687(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//11**i,9)[0]+1 for i in range(integer_log(x,11)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (9*11)/((9-1)*(11-1)) = 99/80. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(9)*log(11)*n)) / sqrt(99). - Vaclav Kotesovec, Sep 24 2020

A025635 Numbers of form 9^i*10^j, with i, j >= 0.

Original entry on oeis.org

1, 9, 10, 81, 90, 100, 729, 810, 900, 1000, 6561, 7290, 8100, 9000, 10000, 59049, 65610, 72900, 81000, 90000, 100000, 531441, 590490, 656100, 729000, 810000, 900000, 1000000, 4782969, 5314410, 5904900, 6561000, 7290000, 8100000, 9000000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a025635 n = a025635_list !! (n-1)
    a025635_list = f $ singleton (1,0,0) where
       f s = y : f (insert (9 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Mathematica
    With[{max = 10^7}, Flatten[Table[9^i*10^j, {i, 0, Log[9, max]}, {j, 0, Log[10, max/9^i]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=9)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
    
  • Python
    from sympy import integer_log
    def A025635(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//10**i,9)[0]+1 for i in range(integer_log(x,10)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = 5/4. - Amiram Eldar, Mar 29 2025
a(n) = 9^A025683(n) * 10^A025691(n). - R. J. Mathar, Jul 06 2025

A107466 Numbers of the form (5^i)*(13^j).

Original entry on oeis.org

1, 5, 13, 25, 65, 125, 169, 325, 625, 845, 1625, 2197, 3125, 4225, 8125, 10985, 15625, 21125, 28561, 40625, 54925, 78125, 105625, 142805, 203125, 274625, 371293, 390625, 528125, 714025, 1015625, 1373125, 1856465, 1953125, 2640625
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), May 27 2005

Keywords

Crossrefs

Programs

  • Mathematica
    mx = 2700000; Sort@ Flatten@ Table[5^i*13^j, {i, 0, Log[5, mx]}, {j, 0, Log[13, mx/5^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=5));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A107466(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,5)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (5*13)/((5-1)*(13-1)) = 65/48. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(5)*log(13)*n)) / sqrt(65). - Vaclav Kotesovec, Sep 23 2020

A108698 Numbers of the form (6^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 6, 11, 36, 66, 121, 216, 396, 726, 1296, 1331, 2376, 4356, 7776, 7986, 14256, 14641, 26136, 46656, 47916, 85536, 87846, 156816, 161051, 279936, 287496, 513216, 527076, 940896, 966306, 1679616, 1724976, 1771561, 3079296, 3162456
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 19 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108698 n = a108698_list !! (n-1)
    a108698_list = f $ singleton (1,0,0) where
       f s = y : f (insert (6 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^6; Flatten[Table[6^i*11^j, {i, 0, Log[6, n]}, {j, 0, Log[11, n/6^i]}]] // Sort (* Amiram Eldar, Oct 07 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*11)/((6-1)*(11-1)) = 33/25. - Amiram Eldar, Oct 07 2020
a(n) ~ exp(sqrt(2*log(6)*log(11)*n)) / sqrt(66). - Vaclav Kotesovec, Oct 07 2020

A108056 Numbers of the form (7^i)*(13^j).

Original entry on oeis.org

1, 7, 13, 49, 91, 169, 343, 637, 1183, 2197, 2401, 4459, 8281, 15379, 16807, 28561, 31213, 57967, 107653, 117649, 199927, 218491, 371293, 405769, 753571, 823543, 1399489, 1529437, 2599051, 2840383, 4826809, 5274997, 5764801, 9796423, 10706059, 18193357, 19882681
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 02 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^7; Flatten[Table[7^i*13^j, {i, 0, Log[7, n]}, {j, 0, Log[13, n/7^i]}]] // Sort (* Amiram Eldar, Sep 23 2020 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=7));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A108056(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,7)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

Sum_{n>=1} 1/a(n) = (7*13)/((7-1)*(13-1)) = 91/72. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(7)*log(13)*n)) / sqrt(91). - Vaclav Kotesovec, Sep 23 2020

Extensions

More terms from Amiram Eldar, Sep 23 2020

A108779 Numbers of the form (10^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 10, 11, 100, 110, 121, 1000, 1100, 1210, 1331, 10000, 11000, 12100, 13310, 14641, 100000, 110000, 121000, 133100, 146410, 161051, 1000000, 1100000, 1210000, 1331000, 1464100, 1610510, 1771561, 10000000, 11000000, 12100000, 13310000
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 26 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108779 n = a108779_list !! (n-1)
    a108779_list = f $ singleton (1,0,0) where
       f s = y : f (insert (10 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^7; Flatten[Table[10^i*11^j, {i, 0, Log10[n]}, {j, 0, Log[11, n/10^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (10*11)/((10-1)*(11-1)) = 11/9. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(10)*log(11)*n)) / sqrt(110). - Vaclav Kotesovec, Sep 25 2020

A025614 Numbers of form 3^i*6^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 6, 9, 18, 27, 36, 54, 81, 108, 162, 216, 243, 324, 486, 648, 729, 972, 1296, 1458, 1944, 2187, 2916, 3888, 4374, 5832, 6561, 7776, 8748, 11664, 13122, 17496, 19683, 23328, 26244, 34992, 39366, 46656, 52488, 59049, 69984, 78732, 104976, 118098
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[3^i*6^j, {i, 0, Log[3, n]}, {j, 0, Log[6, n/3^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (3*6)/((3-1)*(6-1)) = 9/5. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(3)*log(6)*n)) / sqrt(18). - Vaclav Kotesovec, Sep 26 2020
a(n) = 3^A025641(n) *6^A025657(n). - R. J. Mathar, Jul 06 2025

A036303 Composite numbers whose prime factors contain no digits other than 1 and 3.

Original entry on oeis.org

9, 27, 33, 39, 81, 93, 99, 117, 121, 143, 169, 243, 279, 297, 339, 341, 351, 363, 393, 403, 429, 507, 729, 837, 891, 933, 939, 961, 993, 1017, 1023, 1053, 1089, 1179, 1209, 1243, 1287, 1331, 1441, 1469, 1521, 1573, 1703, 1859, 2187, 2197, 2511, 2673, 2799
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020451. - David A. Corneth, Oct 09 2020

Examples

			The composite 117 = 3^2 * 13 is in the sequence as the digits of the prime factors are either 1 or 3. - _David A. Corneth_, Oct 17 2020
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],CompositeQ[#]&&SubsetQ[{1,3},Union[Flatten[IntegerDigits/@FactorInteger[#][[;;,1]]]]]&] (* Harvey P. Dale, Jan 08 2025 *)
  • Python
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        return sum(f.values()) > 1 and all(set(str(p)) <= set("13") for p in f)
    print(list(filter(ok, range(2800)))) # Michael S. Branicky, Sep 27 2021

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020451} (p/(p - 1)) - Sum_{p in A020451} 1/p - 1 = 0.3374936085... . - Amiram Eldar, May 18 2022

A317804 Numbers of form 2^i*12^j, with i, j >= 0.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 36864, 41472, 49152, 55296, 65536
Offset: 1

Views

Author

Dario Ch, Sep 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    With[{max = 10^5}, Flatten[Table[2^i*12^j, {i, 0, Log2[max]}, {j, 0, Log[12, max/2^i]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)
  • Python
    from heapq import heappush, heappop
    def sequence():
        pq = [1]
        seen = set(pq)
        while True:
            value = heappop(pq)
            yield value
            seen.remove(value)
            for x in 2 * value, 12 * value:
                if x not in seen:
                    heappush(pq, x)
                    seen.add(x)
    seq = sequence()
    finalsequence_list = [next(seq) for i in range(100)]  # Dario Ch, Sep 01 2018
    
  • Python
    from sympy import integer_log
    def A317804(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//12**i).bit_length() for i in range(integer_log(x,12)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025

Formula

Sum_{n>=1} 1/a(n) = 24/11. - Amiram Eldar, Mar 29 2025

A108218 Numbers of the form (11^i)*(12^j), with i, j >= 0.

Original entry on oeis.org

1, 11, 12, 121, 132, 144, 1331, 1452, 1584, 1728, 14641, 15972, 17424, 19008, 20736, 161051, 175692, 191664, 209088, 228096, 248832, 1771561, 1932612, 2108304, 2299968, 2509056, 2737152, 2985984, 19487171, 21258732, 23191344, 25299648
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 28 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108218 n = a108218_list !! (n-1)
    a108218_list = f $ singleton (1,0,0) where
       f s = y : f (insert (11 * y, i + 1, j) $ insert (12 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    With[{max = 3*10^7}, Flatten[Table[11^i*12^j, {i, 0, Log[11, max]}, {j, 0, Log[12, max/11^i]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)

Formula

Sum_{n>=1} 1/a(n) = 6/5. - Amiram Eldar, Mar 29 2025
Previous Showing 11-20 of 20 results.