cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 88 results. Next

A270794 The prime/nonprime compound sequence BAA.

Original entry on oeis.org

6, 9, 18, 26, 45, 57, 81, 91, 112, 143, 165, 203, 228, 244, 267, 303, 345, 354, 411, 437, 454, 495, 530, 564, 623, 668, 687, 714, 728, 749, 856, 893, 931, 959, 1032, 1054, 1104, 1158, 1185, 1233, 1268, 1298, 1372, 1392, 1425, 1445, 1539, 1672, 1698, 1714, 1742, 1773, 1802, 1886, 1914, 1966, 2031, 2050, 2104
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2016

Keywords

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622.  - N. J. A. Sloane, Mar 30 2016

A270796 The prime/nonprime compound sequence BBA.

Original entry on oeis.org

8, 10, 15, 20, 27, 32, 38, 40, 49, 58, 63, 72, 78, 82, 88, 99, 110, 114, 121, 125, 129, 140, 146, 155, 166, 172, 175, 183, 185, 189, 212, 217, 225, 230, 245, 248, 258, 265, 272, 279, 289, 292, 306, 309, 315, 319, 334, 355, 360, 362, 368, 375, 377, 393, 402, 408, 416, 420, 427, 435, 438, 452, 473, 478, 482, 486, 507
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2016

Keywords

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622.  - N. J. A. Sloane, Mar 30 2016

A319968 a(n) = A003145(A003145(n)).

Original entry on oeis.org

6, 19, 30, 43, 50, 63, 74, 87, 100, 111, 124, 131, 144, 155, 168, 179, 192, 199, 212, 223, 236, 249, 260, 273, 280, 293, 304, 317, 324, 337, 348, 361, 374, 385, 398, 405, 418, 429, 442, 453, 466, 473, 486, 497, 510, 523, 534, 547, 554, 567, 578, 591, 604, 615, 628, 635, 648, 659, 672, 683, 696, 703, 716, 727, 740, 753
Offset: 1

Views

Author

N. J. A. Sloane, Oct 05 2018

Keywords

Comments

By analogy with the Wythoff compound sequences A003622 etc., the nine compounds of A003144, A003145, A003146 might be called the tribonacci compound sequences. They are A278040, A278041, and A319966-A319972.
From Wolfdieter Lang, Oct 19 2018: (Start)
In another version with the tribonacci word TriWord = A080843 (written as a sequence which has offset 0) and the positions of 0, 1 and 2 given by the B = A278039, A = A278040 and C = A278041 numbers, respectively, the present sequence (with offset 0) gives the smaller of the B-number pairs (B(k), B(k+1)) with B(k+1) = B(k) + 1 for some k >= 0 (named tribonacci B0-numbers), ordered increasingly.
The B-numbers A278039 come in three disjoint and complementary types, called B0-, B1- and B2-numbers. They are defined by the indices k of pairs of consecutive entries TriWord(k), Triword(k+1) depending on their values 0, 0 or 0, 1 or 0, 2 for the B0- or B1- or B2-numbers, respectively.
The B0-numbers are a(n+1) = 2*C(n) - n = A(A(n)) + 1; the B1-numbers are B1(n) = A(n) - 1; and the B2-numbers are B2(n) = C(n) - 1, all for n >= 0.
B0(n) + 1 = B1(A(n)+1), B1(n) + 1 = A(n) and B2(n) + 1 = C(n).
(End)
(a(n)) equals the positions of the word baa in the tribonacci word t = abacabaa..., fixed point of the morphism a->ab, b->ac, c->a. This follows from the fact that the word aa is always preceded in t by the letter b, and the formula BB = AC-1, where A := A003144, B := A003145, C := A003146. - Michel Dekking, Apr 09 2019

Examples

			From _Wolfdieter Lang_, Oct 19 2018: (Start)
The TriWord A080843 starts: 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, ... (offset 0)
The trisection of the B-numbers A278039 (indices for 0 in TriWord) begins:
n :  0   1   2   3   4   5   6   7    8    9   10   11   12   13   14   15   16 ...
B0:  6  19  30  43  50  63  74  87  100  111  124  131  144  155  168  179  192 ...
B1:  0   4   7  11  13  17  20  24   28   31   35   37   41   44   48   51   55 ...
B2:  2   9  15  22  26  33  39  46   53   59   66   70   77   83   90   96  103 ...
------------------------------------------------------------------------------------
(End)
		

Crossrefs

Formula

a(n) = A003145(A003145(n)), for n >= 1.
a(n) = B0(n-1) = 2*A003146(n) - (n+1) = 2*A278041(n-1) - (n-1) = A278040(A278040(n-1)) + 1, for n >= 1. For B0 see a comment above and the example. - Wolfdieter Lang, Oct 19 2018
a(n+1) = B(C(n)) = B(C(n) + 1) - 1 = 2*(A(n) + B(n)) + n + 4, for n >= 0, where B = A278039, C = A278041 and A = A278040. For a proof see the W. Lang link in A278040, Proposition 9, eq. (53). - Wolfdieter Lang, Dec 13 2018
a(n) = 2*(A003144(n) + A003145(n)) + n - 1, n >= 1. [Rewriting a formula of the precedimg entry]. - Wolfdieter Lang, Apr 11 2019

Extensions

More terms from Joerg Arndt, Oct 15 2018

A134861 Wythoff BAA numbers.

Original entry on oeis.org

2, 10, 15, 23, 31, 36, 44, 49, 57, 65, 70, 78, 86, 91, 99, 104, 112, 120, 125, 133, 138, 146, 154, 159, 167, 175, 180, 188, 193, 201, 209, 214, 222, 230, 235, 243, 248, 256, 264, 269, 277, 282, 290, 298, 303, 311, 319, 324, 332, 337, 345, 353, 358, 366, 371
Offset: 1

Views

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BAA = A+2B-3.
Also numbers with suffix string 0010, when written in Zeckendorf representation (with leading zero's for the first term). - A.H.M. Smeets, Mar 20 2024
The asymptotic density of this sequence is 1/phi^4 = A094214^4 = 0.145898... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Mathematica
    A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := B[A[A[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def B(n): return floor(n*phi**2)
    def a(n): return B(A(A(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134861(n): return 3*((n+isqrt(5*n**2)>>1)-1)+(n<<1) # Chai Wah Wu, Aug 10 2022

Formula

a(n) = B(A(A(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.

A134862 Wythoff ABB numbers.

Original entry on oeis.org

8, 21, 29, 42, 55, 63, 76, 84, 97, 110, 118, 131, 144, 152, 165, 173, 186, 199, 207, 220, 228, 241, 254, 262, 275, 288, 296, 309, 317, 330, 343, 351, 364, 377, 385, 398, 406, 419, 432, 440, 453, 461, 474, 487, 495, 508, 521, 529, 542, 550, 563, 576, 584, 597
Offset: 1

Views

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation ABB = 2A+3B.
The asymptotic density of this sequence is 1/phi^5 = phi^5 - 11 = A244593 - 4 = 0.0901699... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Mathematica
    A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := A[B[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def B(n): return floor(n*phi**2)
    def a(n): return A(B(B(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134862(n): return 5*(n+isqrt(5*n**2)>>1)+3*n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = A(B(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.

A134864 Wythoff BBB numbers.

Original entry on oeis.org

13, 34, 47, 68, 89, 102, 123, 136, 157, 178, 191, 212, 233, 246, 267, 280, 301, 322, 335, 356, 369, 390, 411, 424, 445, 466, 479, 500, 513, 534, 555, 568, 589, 610, 623, 644, 657, 678, 699, 712, 733, 746, 767, 788, 801, 822, 843, 856, 877, 890, 911, 932, 945
Offset: 1

Views

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BBB = 3A+5B.
The asymptotic density of this sequence is 1/phi^6 = A094214^6 = 0.05572809... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Maple
    a:=n->floor(n*((1+sqrt(5))/2)^2): [a(a(a(n)))$n=1..55]; # Muniru A Asiru, Nov 24 2018
  • Mathematica
    Nest[Quotient[#(3+Sqrt@5),2]&,#,3]&/@Range@100 (* Federico Provvedi, Nov 24 2018 *)
    b[n_]:=Floor[n GoldenRatio^2]; a[n_]:=b[b[b[n]]]; Array[a, 60] (* Vincenzo Librandi, Nov 24 2018 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def B(n): return floor(n*phi**2)
    def a(n): return B(B(B(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134864(n): return (m:=5*n)+(((n+isqrt(n*m))&-2)<<2) # Chai Wah Wu, Aug 10 2022

Formula

a(n) = B(B(B(n))), n>=1, with B=A001950, the upper Wythoff sequence.

A105774 A "fractal" transform of the Fibonacci numbers: a(1)=1; then if F(n) < k <= F(n+1), a(k) = F(n+1) - a(k - F(n)) where F(n) = A000045(n).

Original entry on oeis.org

1, 1, 2, 4, 4, 7, 7, 6, 12, 12, 11, 9, 9, 20, 20, 19, 17, 17, 14, 14, 15, 33, 33, 32, 30, 30, 27, 27, 28, 22, 22, 23, 25, 25, 54, 54, 53, 51, 51, 48, 48, 49, 43, 43, 44, 46, 46, 35, 35, 36, 38, 38, 41, 41, 40, 88, 88, 87, 85, 85, 82, 82, 83, 77, 77, 78, 80, 80, 69, 69, 70, 72, 72
Offset: 1

Views

Author

Benoit Cloitre, May 04 2005

Keywords

Comments

Let tau = (1+sqrt(5))/2; then the missing numbers 3,5,8,10,13,16,18,21,... are given by round(tau^2*k) for k > 0 (A004937).
Indices n such that a(n) = a(n+1) are given by floor(tau^2*k) - 1 for k > 0 (A003622).
Numbers n such that a(n) differs from a(n+1) are given by floor(tau*k+1/tau) for k > 0 (A022342).
Indices n giving isolated terms (a(n) differs from a(n-1) and a(n+1)) are given by floor(tau*floor(tau^2*k)) for k > 0 (A003623).
Remove 0's from the first differences of sorted values; then you get a version of the infinite Fibonacci word (A001468). I.e., sorted values are 1,1,2,4,4,6,7,7,9,9,11,12,12,..., first differences are 0,1,2,0,2,1,0,2,0,2,1,0,2,0,1,...; removing 0's gives 1,2,2,1,2,2,1,2,1,2,2,1,2,1,2,2,1,2,... #{ k : a(k)=k}=infty.

Examples

			For 1 = F(2) < k <= F(3) = 2 the rule gives a(2) = 2 - a(1) = 1 ... if 5 = F(5) < k <= F(6) = 8 the rule forces a(6) = 8 - a(6-5) = 8 - a(1) = 7; a(7) = 8 - a(2) = 7; a(8) = 8 - a(3) = 6.
		

Crossrefs

Formula

a(A000045(n)) = A006498(n-1) for n >= 1. - Typo corrected by Antti Karttunen, Mar 17 2017
limsup a(n)/n = tau and liminf a(n)/n = (tau+2)/5 where tau = (1+sqrt(5))/2. - Corrected by Jeffrey Shallit, Dec 17 2023
a(n) mod 2 = A085002(n) - Benoit Cloitre, May 10 2005
a(1) = 1; for n > 1, a(n) = A000045(2+A072649(n-1)) - a(n-A000045(1 + A072649(n-1))). - Antti Karttunen, Mar 17 2017

A134863 Wythoff BAB numbers.

Original entry on oeis.org

7, 20, 28, 41, 54, 62, 75, 83, 96, 109, 117, 130, 143, 151, 164, 172, 185, 198, 206, 219, 227, 240, 253, 261, 274, 287, 295, 308, 316, 329, 342, 350, 363, 376, 384, 397, 405, 418, 431, 439, 452, 460, 473, 486, 494, 507, 520, 528, 541, 549, 562, 575, 583, 596
Offset: 1

Views

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BAB = 2A+3B-1.
Also numbers with suffix string 1010, when written in Zeckendorf representation. - A.H.M. Smeets, Mar 24 2024
The asymptotic density of this sequence is 1/phi^5 = phi^5 - 11 = A244593 - 4 = 0.0901699... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Mathematica
    A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := B[A[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def B(n): return floor(n*phi**2)
    def a(n): return B(A(B(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134863(n): return 5*(n+isqrt(5*n**2)>>1)+3*n-1 # Chai Wah Wu, Aug 11 2022

Formula

a(n) = B(A(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.
From A.H.M. Smeets, Mar 24 2024: (Start)
a(n) = 2*A(n) + 3*B(n) - 1 (see Clark Kimberling 2008), with A=A000201, B=A001950, the lower and upper Wythoff sequences, respectively.
Equals {A035336}\{A134861} (= Wythoff BA \ Wythoff BAA). (End)

A048757 Sum_{i=0..2n} (C(2n,i) mod 2)*Fibonacci(i+2) = Sum_{i=0..n} (C(n,i) mod 2)*Fibonacci(2i+2).

Original entry on oeis.org

1, 4, 9, 33, 56, 203, 441, 1596, 2585, 9353, 20304, 73461, 124033, 448756, 974169, 3524577, 5702888, 20633243, 44791065, 162055596, 273617239, 989956471, 2149017696, 7775219067, 12591974497, 45558191716, 98898651657
Offset: 0

Views

Author

Antti Karttunen, Jul 13 1999

Keywords

Comments

The history of 1-D CA Rule 90 starting from the seed pattern 1 interpreted as Zeckendorffian expansion.
Also, product of distinct terms of A001566 and appropriate Fibonacci or Lucas numbers: a(n) = FL(n+2)Product(L(2^i)^bit(n,i),i=0..) Here L(2^i) = A001566 and FL(n) = n-th Fibonacci number if n even, n-th Lucas number if n odd. bit(n,i) is the i-th digit (0 or 1) in the binary expansion of n, with the least significant digit being bit(n,0).

Examples

			1 = Fib(2) = 1;
101 = Fib(4) + Fib(2) = 3 + 1 = 4;
10001 = Fib(6) + Fib(2) = 8 + 1 = 9;
1010101 = Fib(8) + Fib(6) + Fib(4) + Fib(2) = 21 + 8 + 3 + 1 = 33; etc.
		

Crossrefs

a(n) = A022290(A038183(n)) = A022290(A048723(5, n)) = A003622(A051656(n)) = A075148(n, 2)*A050613(n). Third row of A050609, third column of A050610.
Cf. A054433.

Programs

  • Mathematica
    Table[Sum[Mod[Binomial[2n, i], 2] Fibonacci[i + 2], {i, 0, 2n}], {n, 0, 19}] (* Alonso del Arte, Apr 27 2014 *)

A287870 The extended Wythoff array (the Wythoff array with two extra columns) read by antidiagonals downwards.

Original entry on oeis.org

0, 1, 1, 1, 3, 2, 2, 4, 4, 3, 3, 7, 6, 6, 4, 5, 11, 10, 9, 8, 5, 8, 18, 16, 15, 12, 9, 6, 13, 29, 26, 24, 20, 14, 11, 7, 21, 47, 42, 39, 32, 23, 17, 12, 8, 34, 76, 68, 63, 52, 37, 28, 19, 14, 9, 55, 123, 110, 102, 84, 60, 45, 31, 22, 16, 10, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 17, 11
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2017

Keywords

Comments

From Peter Munn, Apr 28 2025: (Start)
Each row in the Wythoff array, A035513, and this extended array satisfies the Fibonacci recurrence; that is each term after the first 2 is the sum of the preceding 2 terms.
We use F_i to denote the i-th Fibonacci term, A000045(i). In particular, we refer below to F_0 = 0, F_1 = 1 and F_2 = 1 several times. Note that to fully understand the description of the relationship between neighboring columns it is important to distinguish F_1 and F_2, although they have the same integer value. Similarly, the identity of an array term should be understood here as including its position in the array, not only its integer value.
The terms of this extended Wythoff array map 1:1 onto the nonempty finite subsets of Fibonacci terms (from F_0 onwards) that do not include both F_i and F_{i+1} for any i. With this map each term is the sum of its subset image. See the table in the examples.
Full description of the mapping with its relationship to A035513:
The (unextended) Wythoff array A035513 includes every positive integer exactly once. So, using the Zeckendorf representation (see link below), the array terms map 1:1 to nonempty finite subsets of the Fibonacci terms from F_2 onwards -- more precisely, onto those that do not include both F_i and F_{i+1} for any i. (Again, each array term is the sum of the Fibonacci numbers from the relevant subset.)
As shown in the Kimberling 1995 link, when we proceed from one term to the next in a row, the indices of the Fibonacci terms in the corresponding subset are incremented. When we proceed leftwards, the indices are decremented, with the subsets for the leftmost column being those that include F_2.
And when we add 2 columns on the left of the Wythoff array, the mapping continues to decrement the indices, so the corresponding extra subsets have F_0 (new leftmost column) or F_1 as their first Fibonacci term.
Thus the terms of this extended Wythoff array map 1:1 onto the nonempty finite subsets of Fibonacci terms (from F_0 onwards) that do not include both F_i and F_{i+1} for any i. The leftmost column is the nonnegative integers: if we were to remove F_0 (value 0) from the subset for an integer in this column, the subset would form the Zeckendorf representation of the integer, as subsets do in the unextended array.
(End)

Examples

			The extended Wythoff array is the Wythoff array with two extra columns, giving the row number n and A000201(n), separated from the main array by a vertical bar:
   0   1 |  1   2   3    5    8   13   21   34    55    89   144 ...
   1   3 |  4   7  11   18   29   47   76  123   199   322   521 ...
   2   4 |  6  10  16   26   42   68  110  178   288   466   754 ...
   3   6 |  9  15  24   39   63  102  165  267   432   699  1131 ...
   4   8 | 12  20  32   52   84  136  220  356   576   932  1508 ...
   5   9 | 14  23  37   60   97  157  254  411   665  1076  1741 ...
   6  11 | 17  28  45   73  118  191  309  500   809  1309  2118 ...
   7  12 | 19  31  50   81  131  212  343  555   898  1453  2351 ...
   8  14 | 22  36  58   94  152  246  398  644  1042  1686  2728 ...
   9  16 | 25  41  66  107  173  280  453  733  1186  1919  3105 ...
  10  17 | 27  44  71  115  186  301  487  788  1275  2063  3338 ...
  11  19 | 30  49  79 ...
  12  21 | 33  54  87 ...
  13  22 | 35  57  92 ...
  14  24 | 38  62 ...
  15  25 | 40  65 ...
  16  27 | 43  70 ...
  17  29 | 46  75 ...
  18  30 | 48  78 ...
  19  32 | 51  83 ...
  20  33 | 53  86 ...
  21  35 | 56  91 ...
  22  37 | 59  96 ...
  23  38 | 61  99 ...
  24  40 | 64 ...
  25  42 | 67 ...
  26  43 | 69 ...
  27  45 | 72 ...
  28  46 | 74 ...
  29  48 | 77 ...
  30  50 | 80 ...
  31  51 | 82 ...
  32  53 | 85 ...
  33  55 | 88 ...
  34  56 | 90 ...
  35  58 | 93 ...
  36  59 | 95 ...
  37  61 | 98 ...
  38  63 | ...
  ...
From _Peter Munn_, Sep 12 2022: (Start)
In the table below, the array terms are shown in the small box at the bottom right of the cells. At the top of each cell is shown a pattern of Fibonacci terms, with "*" indicating a Fibonacci term that appears below it. Those Fibonacci terms sum to the array term. The pattern never includes "**", which would indicate 2 consecutive Fibonacci terms. Note that a Fibonacci term shown as "1" in the 2nd column is F_1, so it may accompany "2", which is F_3. In other columns a Fibonacci term shown as "1" is F_2 and may not accompany "2".
+----------+-----------+------------+------------+------------+
|      *   |      *    |       *    |       *    |       *    |
|      0 __|      1 ___|       1 ___|       2 ___|       3 ___|
|       |0 |       | 1 |        | 1 |        | 2 |        | 3 |
|----------+-----------+------------+------------+------------|
|    * *   |    * *    |     * *    |     * *    |     * *    |
|      0 __|      1 ___|       1 ___|       2 ___|       3 ___|
|    1  |1 |    2  | 3 |     3  | 4 |     5  | 7 |     8  |11 |
|----------+-----------+------------+------------+------------|
|   *  *   |   *  *    |    *  *    |    *  *    |    *  *    |
|   2  0 __|   3  1 ___|    5  1 ___|    8  2 ___|   13  3 ___|
|       |2 |       | 4 |        | 6 |        |10 |        |16 |
|----------+-----------+------------+------------+------------|
|  *   *   |  *   *    |   *   *    |   *   *    |   *   *    |
|      0 __|      1 ___|       1 ___|       2 ___|       3 ___|
|  3    |3 |  5    | 6 |   8    | 9 |  13    |15 |  21    |24 |
|----------+-----------+------------+------------+------------|
|  * * *   |  * * *    |   * * *    |   * * *    |   * * *    |
|      0   |      1    |       1    |       2    |       3    |
|    1   __|    2   ___|     3   ___|     5   ___|     8   ___|
|  3    |4 |  5    | 8 |   8    |12 |  13    |20 |  21    |32 |
|----------+-----------+------------+------------+------------|
| *    *   | *    *    |  *    *    |  *    *    |  *    *    |
|      0 __|      1 ___|       1 ___|       2 ___|       3 ___|
| 5     |5 | 8     | 9 | 13     |14 | 21     |23 | 34     |37 |
|----------+-----------+------------+------------+------------|
| *  * *   | *  * *    |  *  * *    |  *  * *    |  *  * *    |
|      0 __|      1 ___|       1 ___|       2 ___|       3 ___|
| 5  1  |6 | 8  2  |11 | 13  3  |17 | 21  5  |28 | 34  8  |45 |
|----------+-----------+------------+------------+------------|
| * *  *   | * *  *    |  * *  *    |  * *  *    |  * *  *    |
|   2  0 __|   3  1 ___|    5  1 ___|    8  2 ___|   13  3 ___|
| 5     |7 | 8     |12 | 13     |19 | 21     |31 | 34     |50 |
+----------+-----------+------------+------------+------------+
If we replace the Fibonacci terms 0, 1, 1, 2, 3, 5, ... in the main part of the cells with the powers of 2 (1, 2, 4, ...) the sums in the small boxes become the terms of A356875. From this may be seen a relationship to A054582.
- - - - -
Each row of the extended Wythoff array satisfies the Fibonacci recurrence, and may be further extended to the left using this recurrence backwards:
... -1   1   0   1 |  1   2    3    5 ...
... -1   2   1   3 |  4   7   11   18 ...
...  0   2   2   4 |  6  10   16   26 ...
...  0   3   3   6 |  9  15   24   39 ...
...  0   4   4   8 | 12  20   32   52 ...
...  1   4   5   9 | 14  23   37   60 ...
...  1   5   6  11 | 17  28   45   73 ...
...  2   5   7  12 | 19  31   50   81 ...
...  2   6   8  14 | 22  36   58   94 ...
    ...
...  5  10  15  25 | 40  65  105  170 ...
    ...
Note that multiples (*2, *3 and *4) of the top (Fibonacci sequence) row appear a little below, but shifted 2 columns to the left. Larger multiples appear further down and shifted further to the left, starting with row 15, where the terms are 5 times those in the top row and shifted 4 columns leftwards.
(End)
		

Crossrefs

Subtables: A035513 (the Wythoff array), A287869.
Related as a subtable of A357316 as A054582 is to A130128 (as a square).
See A014417 for sequences related to Zeckendorf representation.
See the formula section for the relationships with A003622, A022341, A054582, A356874, A356875.

Formula

From Peter Munn, Apr 29 2025: (Start)
A(n,k) = A356874(floor(m/2)), where m = A356875(n-1, k-1) = A054582(k-1, (A022341(n-1)-1)/2).
A(n,k) = A357316(A003622(n), k-1).
(End)
Previous Showing 41-50 of 88 results. Next