cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 236 results. Next

A304101 Restricted growth sequence transform of A278222(A048679(n)).

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 4, 3, 2, 4, 4, 3, 5, 2, 4, 4, 4, 6, 3, 6, 5, 2, 4, 4, 4, 6, 4, 7, 6, 3, 6, 6, 5, 8, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 3, 6, 6, 6, 10, 5, 9, 8, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 4, 7, 7, 7, 11, 6, 11, 9, 3, 6, 6, 6, 10, 6, 11, 10, 5, 9, 9, 8, 12, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 4, 7, 7, 7
Offset: 0

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

Positions of 2's is given by the positive Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21, ..., that is, A000045(n) from n >= 2 onward.
Positions of 3's is given by Lucas numbers larger than 3: 4, 7, 11, 18, ..., that is, A000032(n) from n >= 3 onward.
Sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary representation of A048679(n). Compare to the scatter plot of A286622.

Crossrefs

Cf. also A286622 (compare the scatter-plots).

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
    A106151(n) = if(n<=1, n, if(n%2, 1+(2*A106151((n-1)/2)), A106151(n>>valuation(n, 2))<<(valuation(n, 2)-1)));
    A048679(n) = if(!n,n,A106151(2*A003714(n)));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    v304101 = rgs_transform(vector(1+up_to, n, A278222(A048679(n-1))));
    A304101(n) = v304101[1+n];

A061858 Differences between the ordinary multiplication table A004247 and the carryless multiplication table for GF(2)[X] polynomials A048720, i.e., the effect of the carry bits in binary multiplication.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 0, 0, 0, 0, 12, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 16, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 24, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, May 11 2001

Keywords

Examples

			From _Peter Munn_, Jan 28 2021: (Start)
The top left 12 X 12 corner of the table:
      |  0   1   2   3   4   5   6   7   8   9  10  11
------+------------------------------------------------
   0  |  0   0   0   0   0   0   0   0   0   0   0   0
   1  |  0   0   0   0   0   0   0   0   0   0   0   0
   2  |  0   0   0   0   0   0   0   0   0   0   0   0
   3  |  0   0   0   4   0   0   8  12   0   0   0   4
   4  |  0   0   0   0   0   0   0   0   0   0   0   0
   5  |  0   0   0   0   0   8   0   8   0   0  16  16
   6  |  0   0   0   8   0   0  16  24   0   0   0   8
   7  |  0   0   0  12   0   8  24  28   0   0  16  28
   8  |  0   0   0   0   0   0   0   0   0   0   0   0
   9  |  0   0   0   0   0   0   0   0   0  16   0  16
  10  |  0   0   0   0   0  16   0  16   0   0  32  32
  11  |  0   0   0   4   0  16   8  28   0  16  32  52
(End)
		

Crossrefs

"Zoomed in" variant: A061859.
Rows/columns 3, 5 and 7 are given by A048728, A048729, A048730.
Main diagonal divided by 4: A213673.
Numbers that generate no carries when multiplied in binary by 11_2: A003714, by 101_2: A048716, by 1001_2: A115845, by 10001_2: A115847, by 100001_2: A114086.
Other sequences related to the presence/absence of a carry in binary multiplication: A116361, A235034, A235040, A236378, A266195, A289726.

Formula

a(n) = A004247(n) - A048720(n).

A095076 Parity of 1-fibits in Zeckendorf expansion A014417(n).

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Comments

Let u = A000201 = (lower Wythoff sequence) and v = A001950 = (upper Wythoff sequence). Conjecture: This sequence is the sequence p given by p(1) = 0 and p(u(k)) = p(k); p(v(k)) = 1-p(k). - Clark Kimberling, Apr 15 2011
[base 2] 0.111010010001100... = 0.9105334708635617... - Joerg Arndt, May 13 2011
From Michel Dekking, Nov 28 2019: (Start)
This sequence is a morphic sequence.
Let the morphism sigma be given by
sigma(1) = 12, sigma(2) = 4, sigma(3) = 1, sigma(4) = 43,
and let the letter-to-letter map lambda be given by
lambda(1) = 0, lambda(2) = 1, lambda(3) = 0, lambda(4) = 1.
Then a(n) = lambda(x(n)), where x(0)x(1)... = 1244343... is the fixed point of sigma starting with 1.
See footnote number 4 in the paper by Emmanuel Ferrand. (End)
From Michel Dekking, Nov 29 2019: (Start)
Proof of Kimberling's conjecture, by virtue of the four symbol morphism sigma in the previous comment.
We first show that the fixed point x = 1244343143112... of sigma has the remarkable property that the letters 1 and 4 exclusively occur at positions u(k), k=1,2,..., and the letters 2 and 3 exclusively occur at positions v(k) k=1,2,....
To see this, let alpha be the Fibonacci morphism on the alphabet {a,b}:
alpha(a) = ab, alpha(b) = a.
It is well known that the lower Wythoff sequence u gives the positions of a in the fixed point abaababaab... of alpha, and that the upper Wythoff sequence v gives the positions of b in this infinite Fibonacci word.
Let pi be the projection from {1,2,3,4} to {a,b} given by
pi(1) = pi(4) = a, pi(2) = pi(3) = b.
One easily checks that (composition of morphisms)
pi sigma = alpha pi.
This implies the remarkable property stated above.
What remains to be proved is that lambda(x(u(k)) = a(k) and lambda(x(v(k)) = a(k), where lambda is the letter-to-letter map in the previous comment. We tackle this problem by an extensive analysis of the return words of the letter 1 in the sequence x= 1244343143112...
These are the words occurring in x which start with 1 and have no other occurrences of 1 in them.
One easily finds that they are given by
A:=1, B:=12, C:=124, D:=143, E:=1243, F:=12443, G:=1244343.
These words partition x. Moreover, sigma induces a morphism rho on the alphabet {A,B,C,D,E,F,G} given by
rho(A) = B, rho(B) =C, rho(C) = F, rho(D) = EA,
rho(E) = FA, rho(F) = GA, rho(G) = GDA.
CLAIM 1: Let mu be the letter-to-letter map given by
mu(A)=mu(B) = 1, mu(C)=mu(D)=mu(E) = 2, mu(F) = 3, mu(G) = 4,
then mu(R) = (s(n+1)-s(n)), where R = GDAEABFAB... is the unique fixed point of rho and s = 1,5,7,8,10,... is the sequence of positions of 1 in (x(u(k)).
Proof of CLAIM 1: The 1's in x occur exclusively at positions u(k), so if we want the differences s(n+1)-s(n), we can strip the 2's and 3's from the return words of 1, and record how long it takes to the next 1. This is the length of the stripped words A~=1, B~=1, C~=14, ... which is given by mu.
CLAIM 2: Let delta be the 'decoration' morphism given by
delta(A) = 1, delta(B) = 2, delta(C) = 3, delta(D) = 21,
delta(E) = 31, delta(F) = 41, delta(G) = 421,
then delta(R) = (t(n+1-t(n)), where rho(R) = R, and t is the sequence of positions of 1 or 3 in the sequence x = 1244343143112....
Proof of CLAIM 2: We have to record the differences in the occurrences of 1 and 3 in the return words of 1. These are given by delta. For example: F = 12443, where 1 and 3 occur at position 1 and 5; and the next 1 will occur at the beginning of any of the seven words A,...,G.
If we combine CLAIM 1 and CLAIM 2 with lambda(1) = lambda(3) = 0, we obtain the first half of Kimberling's conjecture, simply because delta = mu rho, and rho(R) = R.
The second half of the conjecture is obtained in a similar way. (End)
From Michel Dekking, Mar 10 2020: (Start)
The fact that this sequence is a morphic sequence can be easily deduced from the morphism tau given in A007895:
tau((j,0)) = (j,0) (j+1,1),
tau((j,1)) = (j,0).
The sum of digits of a number n in Zeckendorf expansion is given by projecting the n-th letter in the fixed point of tau starting with (0,0) on its first coordinate: (j,i)->j for i=0,1.
If we consider all the j's modulo 2, we obtain a morphism sigma' on 4 letters:
sigma'((0,0)) = (0,0) (1,1),
sigma'((0,1)) = (0,0),
sigma'((1,0)) = (1,0)(0,1),
sigma'((1,1)) = (1,0).
The change of alphabet (0,0)->1, (0,1)->3, (1,0)->4, (1,1)->2, turns sigma' into sigma given in my Nov 28, 2019 comment. The projection map turns into the map 1->0, 2->1, 3->0, 4->1, as in my Nov 28 2019 comment.
(End)
Another proof that this sequence is a morphic sequence has been given in the monograph by Allouche and Shallit. They demonstrate on page 239 that (a(n)) is a letter to letter projection of a fixed point of a morphism on an alphabet of six letters. However, it can be seen easily that two pairs of letters can be merged, yielding a morphism on an alphabet of four letters, which after a change of alphabet equals the morphism from my previous comments. - Michel Dekking, Jun 25 2020

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, Examples 7.8.2 and 7.8.4.

Crossrefs

Characteristic function of A020899.
Run counts are given by A095276.
Cf. A003714, A007895, A010060, A095111, A189034, A189035 (positions of 0 and 1 if the conjecture is valid).

Programs

  • Maple
    A095076 := proc(n)
        modp(A007895(n),2) ;
    end proc:
    seq(A095076(n),n=0..40) ; # R. J. Mathar, Sep 22 2020
  • Mathematica
    r=(1+5^(1/2))/2; u[n_] := Floor[n*r];  (* A000201 *)
    a[1] = 0; h = 128;
    c = (u[#1] &) /@ Range[2h];
    d = (Complement[Range[Max[#1]], #1] &)[c]; (* A001950 *)
    Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}];
    Table[a[c[[n]]] = a[n], {n, 1, h}] (* A095076 conjectured *)
    Flatten[Position[%, 0]]  (* A189034 *)
    Flatten[Position[%%, 1]] (* A189035 *)
    Mod[DigitCount[Select[Range[0, 540], BitAnd[#, 2 #] == 0 &], 2, 1], 2] (* Amiram Eldar, Feb 05 2023 *)
  • Python
    def ok(n): return True if n==0 else n*(2*n & n == 0)
    print([bin(n)[2:].count("1")%2 for n in range(1001) if ok(n)]) # Indranil Ghosh, Jun 08 2017

Formula

a(n) = A010060(A003714(n)).
a(n) = 1 - A095111(n).
a(n) = A007895(n) mod 2. - Michel Dekking, Mar 10 2020

A107909 Numbers having no consecutive zeros or no consecutive ones in binary representation.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 53, 54, 55, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 72, 73, 74, 80, 81, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 106, 107, 109, 110, 111
Offset: 0

Views

Author

Reinhard Zumkeller, May 28 2005

Keywords

Comments

Union of A003754 and A003714, complement of A107911;
a(A023548(n+2)) = A052940(n+1) for n>0;
a(A001924(n)) = A000225(n) = 2^n - 1;
a(A000126(n)) = A000079(n) = 2^n for n>0;
A107910(n) = a(n+1) - a(n).

Crossrefs

Programs

  • Perl
    foreach $n(1..100){$_=sprintf("%b",$n); print "$n\n" if !m/11/||!m/00/}
    # Ivan Neretin, May 01 2016

A200947 Sequence A007924 expressed in decimal.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 16, 17, 18, 20, 32, 33, 64, 65, 66, 68, 128, 129, 256, 257, 258, 260, 512, 513, 514, 516, 517, 520, 1024, 1025, 2048, 2049, 2050, 2052, 2053, 2056, 4096, 4097, 4098, 4100, 8192, 8193, 16384, 16385, 16386, 16388, 32768, 32769, 32770
Offset: 0

Views

Author

Frank M Jackson, Nov 24 2011

Keywords

Examples

			8=7+1, hence A007924(8)=10001, so a(8)=17.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local m, p, r; m:=n; r:=0;
          while m>0 do
            if m=1 then r:=r+1; break fi;
            p:= prevprime(m+1); m:= m-p;
            r:= r+2^numtheory[pi](p)
          od; r
        end:
    seq(a(n), n=0..52);  # Alois P. Heinz, Jun 12 2023
  • Mathematica
    cprime[n_Integer] := If[n==0, 1, Prime[n]]; gentable[n_Integer] := (m=n; ptable={}; While[m != 0, (i = 0; While[cprime[i] <= m, i++]; j=0; While[j
    				

Formula

a(n) = decimal(A007924(n)).
a(n) mod 2 = A121559(n) for n>=1. - Alois P. Heinz, Jun 12 2023

Extensions

Edited by N. J. A. Sloane, May 20 2023

A213370 a(n) = n AND 2*n, where AND is the bitwise AND operator.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 4, 6, 0, 0, 0, 2, 8, 8, 12, 14, 0, 0, 0, 2, 0, 0, 4, 6, 16, 16, 16, 18, 24, 24, 28, 30, 0, 0, 0, 2, 0, 0, 4, 6, 0, 0, 0, 2, 8, 8, 12, 14, 32, 32, 32, 34, 32, 32, 36, 38, 48, 48, 48, 50, 56, 56, 60, 62, 0, 0, 0, 2, 0, 0, 4, 6, 0, 0, 0, 2, 8, 8
Offset: 0

Views

Author

Alex Ratushnyak, Jun 14 2012

Keywords

Crossrefs

Cf. A003714: indices of 0's.
Cf. A213540: indices of 2's, indices of 4's divided by 2.

Programs

  • Mathematica
    Table[BitAnd[n, 2n], {n, 0, 63}] (* Alonso del Arte, Jun 19 2012 *)
  • PARI
    a(n) = bitand(n, 2*n); \\ Michel Marcus, Mar 26 2021
  • Python
    for n in range(99):
        print(2*n & n, end=", ")
    

Formula

a(n) = 2 * A048735(n).
a(n) = (1/2)*(A048727(n) XOR A269160(n)) = (n OR 2n) XOR (n XOR 2n). - Antti Karttunen, May 16 2021

A215023 NegaFibonacci representation for -n.

Original entry on oeis.org

0, 10, 1001, 1000, 1010, 100101, 100100, 100001, 100000, 100010, 101001, 101000, 101010, 10010101, 10010100, 10010001, 10010000, 10010010, 10000101, 10000100, 10000001, 10000000, 10000010, 10001001, 10001000, 10001010, 10100101, 10100100, 10100001, 10100000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 03 2012

Keywords

Comments

Let F_{-n} be the negative Fibonacci numbers (as defined in the first comment in A039834): F_{-1}=1, F_{-2}=-1, F_{-3}=2, F_{-4}=-3, F_{-5}=5, ..., F_{-n}=(-1)^(n-1)F_n.
Every integer has a unique representation as n = Sum_{k=1..r} c_k F_{-k} for some r, where the c_k are 0 or 1 and no two adjacent c's are 1.
Then a(n) = c_r ... c_3 c_2 c_1.

Examples

			-4 = -3 - 1 = F_{-4} + F_{-2}, so a(4) = 1010.
		

References

  • Donald E. Knuth, The Art of Computer Programming, Volume 4A, Combinatorial algorithms, Part 1, Addison-Wesley, 2011, pp. 168-171.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; a[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 10^(i - 1); k -= Fibonacci[-i]]; s]; Table[a[n], {n, 0, -100, -1}] (* Amiram Eldar, Oct 15 2019 *)
  • PARI
    a(n)=my(s=0,k=0,v);while(sCharles R Greathouse IV, Aug 03 2012 [Caution: returns wrong values for some values of n > 17. Amiram Eldar, Oct 15 2019]

Extensions

a(18) inserted by Amiram Eldar, Oct 11 2019

A246595 Run Length Transform of squares.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 4, 9, 1, 1, 1, 4, 4, 4, 9, 16, 1, 1, 1, 4, 1, 1, 4, 9, 4, 4, 4, 16, 9, 9, 16, 25, 1, 1, 1, 4, 1, 1, 4, 9, 1, 1, 1, 4, 4, 4, 9, 16, 4, 4, 4, 16, 4, 4, 16, 36, 9, 9, 9, 36, 16, 16, 25, 36, 1, 1, 1, 4, 1, 1, 4, 9, 1, 1, 1, 4, 4, 4, 9, 16, 1, 1, 1, 4, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2014

Keywords

Comments

The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).

Examples

			From _Omar E. Pol_, Feb 10 2015: (Start)
Written as an irregular triangle in which row lengths is A011782:
1;
1;
1,4;
1,1,4,9;
1,1,1,4,4,4,9,16;
1,1,1,4,1,1,4,9,4,4,4,16,9,9,16,25;
1,1,1,4,1,1,4,9,1,1,1,4,4,4,9,16,4,4,4,16,4,4,16,36,9,9,9,36,16,16,25,36;
...
Right border gives A253909: 1 together with the positive squares.
(End)
From _Omar E. Pol_, Mar 19 2015: (Start)
Also, the sequence can be written as an irregular tetrahedron T(s,r,k) as shown below:
1;
..
1;
..
1;
4;
.......
1,   1;
4;
9;
...............
1,   1,  1,  4;
4,   4;
9;
16;
.............................
1,   1,  1,  4, 1, 1,  4,  9;
4,   4,  4, 16;
9,   9;
16;
25;
......................................................
1,   1,  1,  4, 1, 1,  4,  9, 1, 1, 1, 4, 4, 4, 9, 16;
4,   4,  4, 16, 4, 4, 16, 36;
9,   9,  9, 36;
16, 16;
25;
36;
...
Apart from the initial 1, we have that T(s,r,k) = T(s+1,r,k).
(End)
		

Crossrefs

Cf. A003714 (gives the positions of ones).
Run Length Transforms of other sequences: A071053, A227349, A246588, A246596, A246660, A246661, A246674.

Programs

  • Maple
    ans:=[];
    for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0;
    for i from 1 to L1 do
       if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
       elif out1 = 0 and t1[i] = 1 then c:=c+1;
       elif out1 = 1 and t1[i] = 0 then c:=c;
       elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;
       fi;
       if i = L1 and c>0 then lis:=[c, op(lis)]; fi;
                       od:
    a:=mul(i^2, i in lis);
    ans:=[op(ans), a];
    od:
    ans;
  • Mathematica
    Table[Times @@ (Length[#]^2&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 85}] (* Jean-François Alcover, Jul 11 2017 *)
  • Python
    from operator import mul
    from functools import reduce
    from re import split
    def A246595(n):
        return reduce(mul,(len(d)**2 for d in split('0+',bin(n)[2:]) if d != '')) if n > 0 else 1 # Chai Wah Wu, Sep 07 2014
    
  • Sage
    # uses[RLT from A246660]
    A246595_list = lambda len: RLT(lambda n: n^2, len)
    A246595_list(86) # Peter Luschny, Sep 07 2014
    
  • Scheme
    ; using MIT/GNU Scheme
    (define (A246595 n) (fold-left (lambda (a r) (* a r r)) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
    ;; Other functions are as in A227349 - Antti Karttunen, Sep 08 2014

Formula

a(n) = A227349(n)^2. - Omar E. Pol, Feb 10 2015

A246596 Run Length Transform of Catalan numbers A000108.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 2, 2, 5, 14, 1, 1, 1, 2, 1, 1, 2, 5, 2, 2, 2, 4, 5, 5, 14, 42, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 2, 2, 5, 14, 2, 2, 2, 4, 2, 2, 4, 10, 5, 5, 5, 10, 14, 14, 42, 132, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 2, 2, 5, 14, 1, 1, 1, 2, 1, 1, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2014

Keywords

Comments

The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g. 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).

Examples

			From _Omar E. Pol_, Feb 15 2015: (Start)
Written as an irregular triangle in which row lengths are the terms of A011782:
1;
1;
1,2;
1,1,2,5;
1,1,1,2,2,2,5,14;
1,1,1,2,1,1,2,5,2,2,2,4,5,5,14,42;
1,1,1,2,1,1,2,5,1,1,1,2,2,2,5,14,2,2,2,4,2,2,4,10,5,5,5,10,14,14,42,132;
...
Right border gives the Catalan numbers. This is simply a restatement of the theorem that this sequence is the Run Length Transform of A000108.
(End)
		

Crossrefs

Cf. A000108.
Cf. A003714 (gives the positions of ones).
Run Length Transforms of other sequences: A005940, A069739, A071053, A227349, A246588, A246595, A246660, A246661, A246674.

Programs

  • Maple
    Cat:=n->binomial(2*n,n)/(n+1);
    ans:=[];
    for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0;
    for i from 1 to L1 do
    if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
    elif out1 = 0 and t1[i] = 1 then c:=c+1;
    elif out1 = 1 and t1[i] = 0 then c:=c;
    elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;
    fi;
    if i = L1 and c>0 then lis:=[c, op(lis)]; fi;
    od:
    a:=mul(Cat(i), i in lis);
    ans:=[op(ans), a];
    od:
    ans;
  • Mathematica
    f = CatalanNumber; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 87}] (* Jean-François Alcover, Jul 11 2017 *)
  • Python
    from operator import mul
    from functools import reduce
    from gmpy2 import divexact
    from re import split
    def A246596(n):
        s, c = bin(n)[2:], [1, 1]
        for m in range(1, len(s)):
            c.append(divexact(c[-1]*(4*m+2),(m+2)))
        return reduce(mul,(c[len(d)] for d in split('0+',s))) if n > 0 else 1
    # Chai Wah Wu, Sep 07 2014
    
  • Sage
    # uses[RLT from A246660]
    A246596_list = lambda len: RLT(lambda n: binomial(2*n, n)/(n+1), len)
    A246596_list(88) # Peter Luschny, Sep 07 2014
    
  • Scheme
    ; using MIT/GNU Scheme
    (define (A246596 n) (fold-left (lambda (a r) (* a (A000108 r))) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
    (define A000108 (EIGEN-CONVOLUTION 1 *))
    ;; Note: EIGEN-CONVOLUTION can be found from my IntSeq-library and other functions are as in A227349. - Antti Karttunen, Sep 08 2014

Formula

a(n) = A069739(A005940(1+n)). - Antti Karttunen, May 29 2017

A246674 Run Length Transform of A000225.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 3, 3, 7, 15, 1, 1, 1, 3, 1, 1, 3, 7, 3, 3, 3, 9, 7, 7, 15, 31, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 3, 3, 7, 15, 3, 3, 3, 9, 3, 3, 9, 21, 7, 7, 7, 21, 15, 15, 31, 63, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 3, 3, 7, 15, 1, 1, 1, 3, 1, 1, 3, 7, 3, 3, 3, 9, 7, 7, 15, 31, 3, 3, 3, 9, 3, 3, 9, 21, 3, 3, 3, 9, 9, 9, 21, 45, 7, 7, 7, 21, 7, 7, 21, 49, 15, 15, 15, 45, 31, 31, 63, 127, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 08 2014

Keywords

Comments

a(n) can be also computed by replacing all consecutive runs of zeros in the binary expansion of n with * (multiplication sign), and then performing that multiplication, still in binary, after which the result is converted into decimal. See the example below.

Examples

			115 is '1110011' in binary. The run lengths of 1-runs are 2 and 3, thus a(115) = A000225(2) * A000225(3) = ((2^2)-1) * ((2^3)-1) = 3*7 = 21.
The same result can be also obtained more directly, by realizing that '111' and '11' are the binary representations of 7 and 3, and 7*3 = 21.
From _Omar E. Pol_, Feb 15 2015: (Start)
Written as an irregular triangle in which row lengths are the terms of A011782:
1;
1;
1,3;
1,1,3,7;
1,1,1,3,3,3,7,15;
1,1,1,3,1,1,3,7,3,3,3,9,7,7,15,31;
1,1,1,3,1,1,3,7,1,1,1,3,3,3,7,15,3,3,3,9,3,3,9,21,7,7,7,21,15,15,31,63;
...
Right border gives 1 together with the positive terms of A000225.
(End)
		

Crossrefs

Cf. A003714 (gives the positions of ones).
A001316 is obtained when the same transformation is applied to A000079, the powers of two.
Run Length Transforms of other sequences: A071053, A227349, A246588, A246595, A246596, A246660, A246661, A246685, A247282.

Programs

  • Mathematica
    f[n_] := 2^n - 1; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 100}] (* Jean-François Alcover, Jul 11 2017 *)
  • Python
    # uses RLT function in A278159
    def A246674(n): return RLT(n,lambda m: 2**m-1) # Chai Wah Wu, Feb 04 2022

Formula

For all n >= 0, a(A051179(n)) = A247282(A051179(n)) = A051179(n).
Previous Showing 91-100 of 236 results. Next