A163617 a(2*n) = 2*a(n), a(2*n + 1) = 2*a(n) + 2 + (-1)^n, for all n in Z.
0, 3, 6, 7, 12, 15, 14, 15, 24, 27, 30, 31, 28, 31, 30, 31, 48, 51, 54, 55, 60, 63, 62, 63, 56, 59, 62, 63, 60, 63, 62, 63, 96, 99, 102, 103, 108, 111, 110, 111, 120, 123, 126, 127, 124, 127, 126, 127, 112, 115, 118, 119, 124, 127, 126, 127, 120, 123, 126, 127, 124, 127, 126
Offset: 0
Keywords
Examples
G.f. = 3*x + 6*x^2 + 7*x^3 + 12*x^4 + 15*x^5 + 14*x^6 + 15*x^7 + 24*x^8 + 27*x^9 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
import Data.Bits ((.|.), shiftL) a163617 n = n .|. shiftL n 1 :: Integer -- Reinhard Zumkeller, Mar 06 2013
-
Julia
using IntegerSequences A163617List(len) = [Bits("OR", n, n<<1) for n in 0:len] println(A163617List(62)) # Peter Luschny, Sep 26 2021
-
Maple
A163617 := n -> Bits:-Or(2*n, n): seq(A163617(n), n=0..62); # Peter Luschny, Sep 23 2019
-
Mathematica
Table[BitOr[n, 2*n], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
-
PARI
{a(n) = bitor(n, n<<1)};
-
PARI
{a(n) = if( n==0 || n==-1, n, 2 * a(n \ 2) + (n%2) * (2 + (-1)^(n \ 2)))};
-
Scheme
(define (A163617 n) (A003986bi n (+ n n))) ;; Here A003986bi implements dyadic bitwise-OR operation (see A003986) - Antti Karttunen, Feb 21 2016
Formula
a(n) = -A163618(-n) for all n in ZZ.
Conjecture: a(n) = A003188(n) + (6*n + 1 - (-1)^n)/4. - Velin Yanev, Dec 17 2016
Extensions
Comment about Fibbinary numbers rephrased by Antti Karttunen, Feb 21 2016
Comments