cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A238115 Number of states arising in matrix method for enumerating Hamiltonian cycles on a 2n X 2n grid.

Original entry on oeis.org

1, 6, 32, 182, 1117, 7280, 49625, 349998, 2535077, 18758264, 141254654, 1079364104, 8350678169, 65298467486, 515349097712, 4100346740510, 32858696386765, 265001681344568, 2149447880547398, 17524254766905368, 143540915998174577, 1180736721910617182
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2014

Keywords

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([1/2, -n, -n], [1, 2], 4) - 1:
    seq(simplify(a(n)), n = 1..22);  # Peter Luschny, Dec 13 2024
  • PARI
    a(n)=sum(k=1,n,binomial(n,k)^2*binomial(2*k,k)/(k+1)) \\ Andrew Howroyd, Dec 13 2024

Formula

From Andrew Howroyd, Dec 13 2024: (Start)
a(n) = Sum_{k=1..n} binomial(n,k)^2 * A000108(k).
a(n) = A086618(n) - 1. (End)

A268894 Number of Hamiltonian paths in C_n X P_n.

Original entry on oeis.org

1, 4, 144, 4016, 152230, 14557092, 1966154260, 761411682704, 411068703517542, 684434716944151900, 1572754514153890134760, 11579615738168536799184984, 117186519917858266359631481672, 3877921919790491112398750141807648, 176258463464553583688099296874564393850, 26493868301658838913487471166447301509560736
Offset: 1

Views

Author

Andrew Howroyd, Feb 15 2016

Keywords

Comments

This is the number of undirected paths.

Crossrefs

A222200 Number of Hamiltonian cycles on n X n+1 square grid of points.

Original entry on oeis.org

1, 2, 14, 154, 5320, 301384, 49483138, 13916993782, 10754797724124, 14746957510647992, 53540340738182687296, 354282765498796010420944, 6040964455632840415885507728, 191678405883294971709423926242394, 15351055042300622367048024911122943712
Offset: 2

Views

Author

N. J. A. Sloane, Feb 14 2013

Keywords

Crossrefs

Formula

a(n) = A321172(n,n+1) = A321172(n+1,n). - Robert FERREOL, Apr 01 2019

Extensions

a(16) from Huaide Cheng, Jul 02 2025

A227301 Number of Hamiltonian circuits in a 2n node X 2n node square lattice, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 8 elements.

Original entry on oeis.org

0, 0, 121, 578937, 58407351059, 134528360800075421, 7015812452559988037073365, 8235314565328229497795808499821534, 216740797236120772990968348272561831275923059, 127557553423846099192878370706037904215158660401579043097
Offset: 1

Views

Author

Keywords

Examples

			When n = 3 there are 121 Hamiltonian circuits in a 6 X 6  square lattice where the orbits under the symmetry group of the square have 8 elements.  One of these circuits is shown below with its 8 distinct transformations under rotation and reflection:
o__o__o__o__o__o    o__o  o__o  o__o    o__o__o__o__o__o
|              |    |  |  |  |  |  |    |              |
o__o__o__o  o__o    o  o  o  o  o  o    o__o__o  o__o__o
         |  |       |  |  |  |  |  |          |  |
o__o__o__o  o__o    o  o__o  o  o  o    o__o__o  o__o__o
|              |    |        |  |  |    |              |
o__o__o  o__o__o    o  o__o  o__o  o    o__o  o__o__o__o
      |  |          |  |  |        |       |  |
o__o__o  o__o__o    o  o  o  o__o  o    o__o  o__o__o__o
|              |    |  |  |  |  |  |    |              |
o__o__o__o__o__o    o__o  o__o  o__o    o__o__o__o__o__o
.
o__o  o__o  o__o    o__o__o__o__o__o    o__o  o__o  o__o
|  |  |  |  |  |    |              |    |  |  |  |  |  |
o  o__o  o  o  o    o__o  o__o__o__o    o  o  o  o__o  o
|        |  |  |       |  |             |  |  |        |
o  o__o  o__o  o    o__o  o__o__o__o    o  o__o  o__o  o
|  |  |        |    |              |    |        |  |  |
o  o  o  o__o  o    o__o__o  o__o__o    o  o__o  o  o  o
|  |  |  |  |  |          |  |          |  |  |  |  |  |
o  o  o  o  o  o    o__o__o  o__o__o    o  o  o  o  o  o
|  |  |  |  |  |    |              |    |  |  |  |  |  |
o__o  o__o  o__o    o__o__o__o__o__o    o__o  o__o  o__o
.
o__o__o__o__o__o    o__o  o__o  o__o
|              |    |  |  |  |  |  |
o__o__o  o__o__o    o  o  o  o  o  o
      |  |          |  |  |  |  |  |
o__o__o  o__o__o    o  o  o  o__o  o
|              |    |  |  |        |
o__o__o__o  o__o    o  o__o  o__o  o
         |  |       |        |  |  |
o__o__o__o  o__o    o  o__o  o  o  o
|              |    |  |  |  |  |  |
o__o__o__o__o__o    o__o  o__o  o__o
		

Crossrefs

Formula

Extensions

a(4) from Giovanni Resta, Jul 11 2013
a(5)-a(10) from Ed Wynn, Feb 05 2014

A269561 Number of (undirected) Hamiltonian cycles in the n X n rook graph K_n X K_n.

Original entry on oeis.org

1, 48, 284112, 335750676480, 112249362914249932800, 14994936423694913432308324761600
Offset: 2

Views

Author

Andrew Howroyd, Feb 29 2016

Keywords

Crossrefs

Extensions

Name adjusted by Eric W. Weisstein, May 06 2019

A333651 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2, read by rows, where T(n,k) is the number of 2*(k+2)-cycles in the n X n grid graph which pass through NW corner (0,0).

Original entry on oeis.org

1, 1, 2, 4, 1, 2, 6, 18, 40, 24, 6, 1, 2, 6, 20, 72, 248, 698, 1100, 1096, 662, 206, 1, 2, 6, 20, 74, 298, 1228, 4762, 15984, 40026, 75524, 109150, 121130, 99032, 51964, 11996, 1072, 1, 2, 6, 20, 74, 300, 1300, 5844, 26148, 110942, 427388, 1393796, 3790524, 8648638, 16727776, 27529284, 38120312, 43012614, 37385280, 23166526, 9496426, 2286972, 242764
Offset: 2

Views

Author

Seiichi Manyama, Apr 01 2020

Keywords

Examples

			T(3,0) = 1;
   +--*
   |  |
   *--*
T(3,1) = 2;
   +--*--*   +--*
   |     |   |  |
   *--*--*   *  *
             |  |
             *--*
T(3,2) = 4;
   +--*--*   +--*--*   +--*--*   +--*
   |     |   |     |   |     |   |  |
   *     *   *  *--*   *--*  *   *  *--*
   |     |   |  |         |  |   |     |
   *--*--*   *--*         *--*   *--*--*
Triangle starts:
===================================================
n\k| 0  1  2   3   4    5     6 ...     10 ...  16
---|-----------------------------------------------
2  | 1;
3  | 1, 2, 4;
4  | 1, 2, 6, 18, 40,  24,    6;
5  | 1, 2, 6, 20, 72, 248,  698, ... , 206;
6  | 1, 2, 6, 20, 74, 298, 1228, .......... , 1072;
7  | 1, 2, 6, 20, 74, 300, 1300, ...
8  | 1, 2, 6, 20, 74, 300, 1302, ...
9  | 1, 2, 6, 20, 74, 300, 1302, ...
		

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333651(n):
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles().including(1)
        return [cycles.len(2 * k).len() for k in range(2, n * n // 2 + 1)]
    print([i for n in range(2, 8) for i in A333651(n)])

Formula

T(n,k) = A034010(k+2) for k <= n-2.

A333652 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-n, read by rows, where T(n,k) is the number of 2*(k+n)-cycles in the n X n grid graph which pass through NW and SW corners.

Original entry on oeis.org

1, 1, 3, 1, 6, 17, 17, 6, 1, 10, 45, 167, 404, 570, 460, 186, 1, 15, 100, 506, 2164, 7726, 20483, 39401, 56015, 57632, 37450, 10340, 1072, 1, 21, 196, 1316, 7066, 33983, 147377, 546400, 1656592, 4099732, 8394433, 14227675, 19443270, 20239262, 14767415, 7007270, 1926990, 230440
Offset: 2

Views

Author

Seiichi Manyama, Apr 01 2020

Keywords

Examples

			T(3,0) = 1;
   +--*
   |  |
   *  *
   |  |
   +--*
T(3,1) = 3;
   +--*--*   +--*--*   +--*
   |     |   |     |   |  |
   *     *   *  *--*   *  *--*
   |     |   |  |      |     |
   +--*--*   +--*      +--*--*
Triangle starts:
====================================================================
n\k| 0   1    2     3      4 ...      7 ...  12 ...    17 ...    24
---|----------------------------------------------------------------
2  | 1;
3  | 1,  3;
4  | 1,  6,  17,   17,     6;
5  | 1, 10,  45,  167,   404, ... , 186;
6  | 1, 15, 100,  506,  2164, .......... , 1072;
7  | 1, 21, 196, 1316,  7066, .................. , 230440;
8  | 1, 28, 350, 3038, 20317, ............................ , 4638576;
		

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333652(n):
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles().including(1).including(n)
        return [cycles.len(2 * k).len() for k in range(n, n * n // 2 + 1)]
    print([i for n in range(2, 8) for i in A333652(n)])

Formula

T(n,0) = 1.
T(n,1) = A000217(n-1) for n > 2.

A333667 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2*n+2, read by rows, where T(n,k) is the number of 2*(k+2*n-2)-cycles in the n X n grid graph which pass through NW and SE corners ((0,0),(n-1,n-1)).

Original entry on oeis.org

1, 3, 20, 16, 6, 175, 420, 562, 456, 186, 1764, 8064, 21224, 39500, 55376, 57248, 37586, 10260, 1072, 19404, 138600, 569768, 1717152, 4151965, 8371428, 14126846, 19364732, 20241450, 14759356, 6998166, 1927724, 230440
Offset: 2

Views

Author

Seiichi Manyama, Apr 01 2020

Keywords

Examples

			T(3,0) = 3;
   +--*--*   +--*--*   +--*
   |     |   |     |   |  |
   *--*  *   *     *   *  *--*
      |  |   |     |   |     |
      *--+   *--*--+   *--*--+
Triangle starts:
=======================================================================
n\k|      0        1         2 ...      4 ...   8 ...    12 ...     18
---|-------------------------------------------------------------------
2  |      1;
3  |      3;
4  |     20,      16,        6;
5  |    175,     420,      562, ... , 186;
6  |   1764,    8064,    21224, .......... , 1072;
7  |  19404,  138600,   569768, .................. , 230440;
8  | 226512, 2265120, 12922446, ............................ , 4638576;
		

Crossrefs

Row sums give A333323.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333667(n):
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles().including(1).including(n * n)
        return [cycles.len(2 * k).len() for k in range(2 * n - 2, n * n // 2 + 1)]
    print([i for n in range(2, 8) for i in A333667(n)])

Formula

T(n,0) = A000891(n-2).

A333668 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2*n+2, read by rows, where T(n,k) is the number of 2*(k+2*n-2)-cycles in the n X n grid graph which pass through four corners ((0,0), (0,n-1), (n-1,n-1), (n-1,0)).

Original entry on oeis.org

1, 1, 1, 4, 6, 1, 12, 58, 156, 146, 1, 24, 244, 1416, 5435, 12976, 16654, 7108, 1072, 1, 40, 696, 7076, 47965, 236628, 873610, 2348664, 4335724, 4958224, 3407276, 1298704, 205792
Offset: 2

Views

Author

Seiichi Manyama, Apr 01 2020

Keywords

Examples

			T(4,1) = 4;
   +--*--*--+   +--*--*--+   +--*--*--+   +--*  *--+
   |        |   |        |   |        |   |  |  |  |
   *--*     *   *     *--*   *        *   *  *--*  *
      |     |   |     |      |        |   |        |
   *--*     *   *     *--*   *  *--*  *   *        *
   |        |   |        |   |  |  |  |   |        |
   +--*--*--+   +--*--*--+   +--*  *--+   +--*--*--+
Triangle starts:
=================================================================
n\k| 0   1     2      3       4 ...       8 ...    12 ...     18
---|-------------------------------------------------------------
2  | 1;
3  | 1;
4  | 1,  4,    6;
5  | 1, 12,   58,   156,    146;
6  | 1, 24,  244,  1416,   5435, ... , 1072;
7  | 1, 40,  696,  7076,  47965, ........... , 205792;
8  | 1, 60, 1590, 24960, 263770, ..................... , 4638576;
		

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333668(n):
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        for i in [1, n, n * (n - 1) + 1, n * n]:
            cycles = cycles.including(i)
        return [cycles.len(2 * k).len() for k in range(2 * n - 2, n * n // 2 + 1)]
    print([i for n in range(2, 8) for i in A333668(n)])

Formula

T(n,0) = 1.
T(n,1) = A046092(n-3).

A238116 Number of continuations arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.

Original entry on oeis.org

1, 14, 162, 1966, 25567, 351880, 5056350, 75100735, 1144833705, 17821104101
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2014

Keywords

Crossrefs

Previous Showing 21-30 of 43 results. Next