A238115
Number of states arising in matrix method for enumerating Hamiltonian cycles on a 2n X 2n grid.
Original entry on oeis.org
1, 6, 32, 182, 1117, 7280, 49625, 349998, 2535077, 18758264, 141254654, 1079364104, 8350678169, 65298467486, 515349097712, 4100346740510, 32858696386765, 265001681344568, 2149447880547398, 17524254766905368, 143540915998174577, 1180736721910617182
Offset: 1
-
a := n -> hypergeom([1/2, -n, -n], [1, 2], 4) - 1:
seq(simplify(a(n)), n = 1..22); # Peter Luschny, Dec 13 2024
-
a(n)=sum(k=1,n,binomial(n,k)^2*binomial(2*k,k)/(k+1)) \\ Andrew Howroyd, Dec 13 2024
A268894
Number of Hamiltonian paths in C_n X P_n.
Original entry on oeis.org
1, 4, 144, 4016, 152230, 14557092, 1966154260, 761411682704, 411068703517542, 684434716944151900, 1572754514153890134760, 11579615738168536799184984, 117186519917858266359631481672, 3877921919790491112398750141807648, 176258463464553583688099296874564393850, 26493868301658838913487471166447301509560736
Offset: 1
A222200
Number of Hamiltonian cycles on n X n+1 square grid of points.
Original entry on oeis.org
1, 2, 14, 154, 5320, 301384, 49483138, 13916993782, 10754797724124, 14746957510647992, 53540340738182687296, 354282765498796010420944, 6040964455632840415885507728, 191678405883294971709423926242394, 15351055042300622367048024911122943712
Offset: 2
A227301
Number of Hamiltonian circuits in a 2n node X 2n node square lattice, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 8 elements.
Original entry on oeis.org
0, 0, 121, 578937, 58407351059, 134528360800075421, 7015812452559988037073365, 8235314565328229497795808499821534, 216740797236120772990968348272561831275923059, 127557553423846099192878370706037904215158660401579043097
Offset: 1
When n = 3 there are 121 Hamiltonian circuits in a 6 X 6 square lattice where the orbits under the symmetry group of the square have 8 elements. One of these circuits is shown below with its 8 distinct transformations under rotation and reflection:
o__o__o__o__o__o o__o o__o o__o o__o__o__o__o__o
| | | | | | | | | |
o__o__o__o o__o o o o o o o o__o__o o__o__o
| | | | | | | | | |
o__o__o__o o__o o o__o o o o o__o__o o__o__o
| | | | | | | |
o__o__o o__o__o o o__o o__o o o__o o__o__o__o
| | | | | | | |
o__o__o o__o__o o o o o__o o o__o o__o__o__o
| | | | | | | | | |
o__o__o__o__o__o o__o o__o o__o o__o__o__o__o__o
.
o__o o__o o__o o__o__o__o__o__o o__o o__o o__o
| | | | | | | | | | | | | |
o o__o o o o o__o o__o__o__o o o o o__o o
| | | | | | | | | |
o o__o o__o o o__o o__o__o__o o o__o o__o o
| | | | | | | | | |
o o o o__o o o__o__o o__o__o o o__o o o o
| | | | | | | | | | | | | |
o o o o o o o__o__o o__o__o o o o o o o
| | | | | | | | | | | | | |
o__o o__o o__o o__o__o__o__o__o o__o o__o o__o
.
o__o__o__o__o__o o__o o__o o__o
| | | | | | | |
o__o__o o__o__o o o o o o o
| | | | | | | |
o__o__o o__o__o o o o o__o o
| | | | | |
o__o__o__o o__o o o__o o__o o
| | | | | |
o__o__o__o o__o o o__o o o o
| | | | | | | |
o__o__o__o__o__o o__o o__o o__o
a(5)-a(10) from
Ed Wynn, Feb 05 2014
A269561
Number of (undirected) Hamiltonian cycles in the n X n rook graph K_n X K_n.
Original entry on oeis.org
1, 48, 284112, 335750676480, 112249362914249932800, 14994936423694913432308324761600
Offset: 2
A333651
Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2, read by rows, where T(n,k) is the number of 2*(k+2)-cycles in the n X n grid graph which pass through NW corner (0,0).
Original entry on oeis.org
1, 1, 2, 4, 1, 2, 6, 18, 40, 24, 6, 1, 2, 6, 20, 72, 248, 698, 1100, 1096, 662, 206, 1, 2, 6, 20, 74, 298, 1228, 4762, 15984, 40026, 75524, 109150, 121130, 99032, 51964, 11996, 1072, 1, 2, 6, 20, 74, 300, 1300, 5844, 26148, 110942, 427388, 1393796, 3790524, 8648638, 16727776, 27529284, 38120312, 43012614, 37385280, 23166526, 9496426, 2286972, 242764
Offset: 2
T(3,0) = 1;
+--*
| |
*--*
T(3,1) = 2;
+--*--* +--*
| | | |
*--*--* * *
| |
*--*
T(3,2) = 4;
+--*--* +--*--* +--*--* +--*
| | | | | | | |
* * * *--* *--* * * *--*
| | | | | | | |
*--*--* *--* *--* *--*--*
Triangle starts:
===================================================
n\k| 0 1 2 3 4 5 6 ... 10 ... 16
---|-----------------------------------------------
2 | 1;
3 | 1, 2, 4;
4 | 1, 2, 6, 18, 40, 24, 6;
5 | 1, 2, 6, 20, 72, 248, 698, ... , 206;
6 | 1, 2, 6, 20, 74, 298, 1228, .......... , 1072;
7 | 1, 2, 6, 20, 74, 300, 1300, ...
8 | 1, 2, 6, 20, 74, 300, 1302, ...
9 | 1, 2, 6, 20, 74, 300, 1302, ...
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333651(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles().including(1)
return [cycles.len(2 * k).len() for k in range(2, n * n // 2 + 1)]
print([i for n in range(2, 8) for i in A333651(n)])
A333652
Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-n, read by rows, where T(n,k) is the number of 2*(k+n)-cycles in the n X n grid graph which pass through NW and SW corners.
Original entry on oeis.org
1, 1, 3, 1, 6, 17, 17, 6, 1, 10, 45, 167, 404, 570, 460, 186, 1, 15, 100, 506, 2164, 7726, 20483, 39401, 56015, 57632, 37450, 10340, 1072, 1, 21, 196, 1316, 7066, 33983, 147377, 546400, 1656592, 4099732, 8394433, 14227675, 19443270, 20239262, 14767415, 7007270, 1926990, 230440
Offset: 2
T(3,0) = 1;
+--*
| |
* *
| |
+--*
T(3,1) = 3;
+--*--* +--*--* +--*
| | | | | |
* * * *--* * *--*
| | | | | |
+--*--* +--* +--*--*
Triangle starts:
====================================================================
n\k| 0 1 2 3 4 ... 7 ... 12 ... 17 ... 24
---|----------------------------------------------------------------
2 | 1;
3 | 1, 3;
4 | 1, 6, 17, 17, 6;
5 | 1, 10, 45, 167, 404, ... , 186;
6 | 1, 15, 100, 506, 2164, .......... , 1072;
7 | 1, 21, 196, 1316, 7066, .................. , 230440;
8 | 1, 28, 350, 3038, 20317, ............................ , 4638576;
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333652(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles().including(1).including(n)
return [cycles.len(2 * k).len() for k in range(n, n * n // 2 + 1)]
print([i for n in range(2, 8) for i in A333652(n)])
A333667
Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2*n+2, read by rows, where T(n,k) is the number of 2*(k+2*n-2)-cycles in the n X n grid graph which pass through NW and SE corners ((0,0),(n-1,n-1)).
Original entry on oeis.org
1, 3, 20, 16, 6, 175, 420, 562, 456, 186, 1764, 8064, 21224, 39500, 55376, 57248, 37586, 10260, 1072, 19404, 138600, 569768, 1717152, 4151965, 8371428, 14126846, 19364732, 20241450, 14759356, 6998166, 1927724, 230440
Offset: 2
T(3,0) = 3;
+--*--* +--*--* +--*
| | | | | |
*--* * * * * *--*
| | | | | |
*--+ *--*--+ *--*--+
Triangle starts:
=======================================================================
n\k| 0 1 2 ... 4 ... 8 ... 12 ... 18
---|-------------------------------------------------------------------
2 | 1;
3 | 3;
4 | 20, 16, 6;
5 | 175, 420, 562, ... , 186;
6 | 1764, 8064, 21224, .......... , 1072;
7 | 19404, 138600, 569768, .................. , 230440;
8 | 226512, 2265120, 12922446, ............................ , 4638576;
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333667(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles().including(1).including(n * n)
return [cycles.len(2 * k).len() for k in range(2 * n - 2, n * n // 2 + 1)]
print([i for n in range(2, 8) for i in A333667(n)])
A333668
Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2*n+2, read by rows, where T(n,k) is the number of 2*(k+2*n-2)-cycles in the n X n grid graph which pass through four corners ((0,0), (0,n-1), (n-1,n-1), (n-1,0)).
Original entry on oeis.org
1, 1, 1, 4, 6, 1, 12, 58, 156, 146, 1, 24, 244, 1416, 5435, 12976, 16654, 7108, 1072, 1, 40, 696, 7076, 47965, 236628, 873610, 2348664, 4335724, 4958224, 3407276, 1298704, 205792
Offset: 2
T(4,1) = 4;
+--*--*--+ +--*--*--+ +--*--*--+ +--* *--+
| | | | | | | | | |
*--* * * *--* * * * *--* *
| | | | | | | |
*--* * * *--* * *--* * * *
| | | | | | | | | |
+--*--*--+ +--*--*--+ +--* *--+ +--*--*--+
Triangle starts:
=================================================================
n\k| 0 1 2 3 4 ... 8 ... 12 ... 18
---|-------------------------------------------------------------
2 | 1;
3 | 1;
4 | 1, 4, 6;
5 | 1, 12, 58, 156, 146;
6 | 1, 24, 244, 1416, 5435, ... , 1072;
7 | 1, 40, 696, 7076, 47965, ........... , 205792;
8 | 1, 60, 1590, 24960, 263770, ..................... , 4638576;
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333668(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
for i in [1, n, n * (n - 1) + 1, n * n]:
cycles = cycles.including(i)
return [cycles.len(2 * k).len() for k in range(2 * n - 2, n * n // 2 + 1)]
print([i for n in range(2, 8) for i in A333668(n)])
A238116
Number of continuations arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.
Original entry on oeis.org
1, 14, 162, 1966, 25567, 351880, 5056350, 75100735, 1144833705, 17821104101
Offset: 1
Comments