cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 126 results. Next

A155118 Array T(n,k) read by antidiagonals: the k-th term of the n-th iterated differences of A140429.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 5, 8, 12, 18, 27, 11, 16, 24, 36, 54, 81, 21, 32, 48, 72, 108, 162, 243, 43, 64, 96, 144, 216, 324, 486, 729, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 171, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 341, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0

Views

Author

Paul Curtz, Jan 20 2009

Keywords

Comments

Deleting column k=0 and reading by antidiagonals yields A036561.
Deleting column k=0 and reading the antidiagonals downwards yields A175840.

Examples

			The array starts in row n=0 with columns k>=0 as:
   0   1    3    9    27    81    243    729    2187  ... A140429;
   1   2    6   18    54   162    486   1458    4374  ... A025192;
   1   4   12   36   108   324    972   2916    8748  ... A003946;
   3   8   24   72   216   648   1944   5832   17496  ... A080923;
   5  16   48  144   432  1296   3888  11664   34992  ... A257970;
  11  32   96  288   864  2592   7776  23328   69984  ...
  21  64  192  576  1728  5184  15552  46656  139968  ...
Antidiagonal triangle begins as:
   0;
   1,   1;
   1,   2,   3;
   3,   4,   6,   9;
   5,   8,  12,  18,  27;
  11,  16,  24,  36,  54,  81;
  21,  32,  48,  72, 108, 162, 243;
  43,  64,  96, 144, 216, 324, 486, 729;
  85, 128, 192, 288, 432, 648, 972, 1458, 2187; - _G. C. Greubel_, Mar 25 2021
		

Crossrefs

Programs

  • Magma
    t:= func< n,k | k eq 0 select (2^(n-k) -(-1)^(n-k))/3 else 2^(n-k)*3^(k-1) >;
    [t(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 25 2021
    
  • Maple
    T:=proc(n,k)if(k>0)then return 2^n*3^(k-1):else return (2^n - (-1)^n)/3:fi:end:
    for d from 0 to 8 do for m from 0 to d do print(T(d-m,m)):od:od: # Nathaniel Johnston, Apr 13 2011
  • Mathematica
    t[n_, k_]:= If[k==0, (2^(n-k) -(-1)^(n-k))/3, 2^(n-k)*3^(k-1)];
    Table[t[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
  • Sage
    def A155118(n,k): return (2^(n-k) -(-1)^(n-k))/3 if k==0 else 2^(n-k)*3^(k-1)
    flatten([[A155118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 25 2021

Formula

For the square array:
T(n,k) = 2^n*3^(k-1), k>0.
T(n,k) = T(n-1,k+1) - T(n-1,k), n>0.
Rows:
T(0,k) = A140429(k) = A000244(k-1).
T(1,k) = A025192(k).
T(2,k) = A003946(k).
T(3,k) = A080923(k+1).
T(4,k) = A257970(k+3).
Columns:
T(n,0) = A001045(n) (Jacobsthal numbers J_{n}).
T(n,1) = A000079(n).
T(n,2) = A007283(n).
T(n,3) = A005010(n).
T(n,4) = A175806(n).
T(0,k) - T(k+1,0) = 4*A094705(k-2).
From G. C. Greubel, Mar 25 2021: (Start)
For the antidiagonal triangle:
t(n, k) = T(n-k, k).
t(n, k) = (2^(n-k) - (-1)^(n-k))/3 (J_{n-k}) if k = 0 else 2^(n-k)*3^(k-1).
Sum_{k=0..n} t(n, k) = 3^n - J_{n+1}, where J_{n} = A001045(n).
Sum_{k=0..n} t(n, k) = A004054(n-1) for n >= 1. (End)

Extensions

a(22) - a(57) from Nathaniel Johnston, Apr 13 2011

A163315 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 318, 936, 2760, 8136, 23976, 70662, 208260, 613788, 1808964, 5331420, 15712878, 46309320, 136483800, 402247944, 1185513624, 3493970742, 10297504260, 30349021740, 89445276900, 263615006412, 776931706398
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6) )); // G. C. Greubel, May 12 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6), {x,0,30}], x] (* or *) Join[{1}, LinearRecurrence[{2,2,2,2,-3}, {1,4,12,36,108,318}, 30]] (* G. C. Greubel, Dec 18 2016 *)
    coxG[{4, 3, -2}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6)) \\ G. C. Greubel, Dec 18 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
a(n) = 2*a(n-1)+2*a(n-2)+2*a(n-3)+2*a(n-4)-3*a(n-5). - Wesley Ivan Hurt, May 10 2021

A164353 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2910, 8712, 26088, 78120, 233928, 700488, 2097576, 6281094, 18808452, 56321052, 168650820, 505017180, 1512250884, 4528366236, 13559985966, 40604758920, 121589096856, 364092999624, 1090259865432
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8) )); // G. C. Greubel, Aug 24 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 24 2019
  • Mathematica
    CoefficientList[Series[(x^7 + 2 x^6 + 2 x^5 + 2 x^4 + 2 x^3 + 2 x^2 + 2 x + 1)/(3 x^7 - 2 x^6 - 2 x^5 - 2 x^4 - 2 x^3 - 2 x^2 - 2 x + 1), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
    coxG[{7,3,-2,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 15 2015 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8)) \\ G. C. Greubel, Sep 15 2017
    
  • Sage
    def A164353_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8)).list()
    A164353_list(30) # G. C. Greubel, Aug 24 2019

Formula

G.f.: (x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 1)/(3*x^7 - 2*x^6 - 2*x^5 - 2*x^4 - 2*x^3 - 2*x^2 - 2*x + 1).
a(n) = -3*a(n-7) + 2*Sum_{k=1..6} a(n-k). - Wesley Ivan Hurt, May 11 2021

A164697 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8742, 26208, 78576, 235584, 706320, 2117664, 6349104, 19035648, 57071982, 171111132, 513019140, 1538115228, 4611520836, 13826093148, 41452886916, 124282529820, 372619336494, 1117173669768
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[4, 12, 36, 108, 324, 972, 2916, 8742];; for n in [9..30] do a[n]:=2*Sum([1..7], j-> a[n-j]) -3*a[n-8]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^8)/(1-3*t+5*t^8-3*t^9) )); // G. C. Greubel, Sep 16 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^8)/(1-3*t+5*t^8-3*t^9), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 16 2019
  • Mathematica
    CoefficientList[Series[(x^8 +2x^7 +2x^6 +2x^5 +2x^4 +2x^3 +2x^2 +2x +1)/( 3x^8 -2x^7 -2x^6 -2x^5 -2x^4 -2x^3 -2x^2 -2x +1), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
    coxG[{8,3,-2,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 03 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^8)/(1-3*t+5*t^8-3*t^9)) \\ G. C. Greubel, Sep 16 2019
    
  • Sage
    def A164697_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^8)/(1-3*t+5*t^8-3*t^9)).list()
    A164697_list(30) # G. C. Greubel, Sep 16 2019
    

Formula

G.f.: (x^8 + 2*x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 1)/( 3*x^8 - 2*x^7 - 2*x^6 - 2*x^5 - 2*x^4 - 2*x^3 - 2*x^2 - 2*x + 1).
a(n) = -3*a(n-8) + 2*Sum_{k=1..7} a(n-k). - Wesley Ivan Hurt, May 11 2021

A165756 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78726, 236160, 708432, 2125152, 6375024, 19123776, 57367440, 172090656, 516236976, 1548605952, 4645502958, 13935564252, 41803859076, 125403076764, 376183730628, 1128474698076
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78726];; for n in [11..30] do a[n]:=2*Sum([1..9], j-> a[n-j]) -3*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-3*t+5*t^10-3*t^11) )); // G. C. Greubel, Sep 16 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-3*t+5*t^10-3*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Sep 16 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-3*t+5*t^10-3*t^11), {t, 0, 30}], t] (* G. C. Greubel, Apr 07 2016 *)
    coxG[{10, 3, -2}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 16 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-3*t+5*t^10-3*t^11)) \\ G. C. Greubel, Sep 16 2019
    
  • Sage
    def A165756_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-3*t+5*t^10-3*t^11)).list()
    A165756_list(30) # G. C. Greubel, Sep 16 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).

A166328 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236190, 708552, 2125608, 6376680, 19129608, 57387528, 172158696, 516464424, 1549358280, 4647969864, 13943594664, 41829839238, 125486683524, 376451548188, 1129329137988
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    seq(coeff(series((1+t)*(1-t^11)/(1-3*t+5*t^11-3*t^12), t, n+1), t, n), n = 0..30); # G. C. Greubel, Mar 12 2020
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^11)/(1-3*t+5*t^11-3*t^12), {t,0,30}], t] (* G. C. Greubel, May 09 2016 *)
    coxG[{11, 3, -2}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    def A166328_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^11)/(1-3*t+5*t^11-3*t^12) ).list()
    A166328_list(30) # G. C. Greubel, Aug 10 2019

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).

A166858 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125758, 6377256, 19131720, 57395016, 172184616, 516552552, 1549653768, 4648949640, 13946813928, 41840336808, 125520695496, 376561141704, 1129680590760
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 25 2016 *)
    coxG[{13,3,-2,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 27 2022 *)

Formula

G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).

A167105 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377286, 19131840, 57395472, 172186272, 516558384, 1549673856, 4649017680, 13947041376, 41841089136, 125523162432, 376569172368, 1129706572320
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1) / (3*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
    coxG[{14,3,-2,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 11 2016 *)

Formula

G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).

A167649 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131870, 57395592, 172186728, 516560040, 1549679688, 4649037768, 13947109416, 41841316584, 125523914760, 376571639304, 1129714602984
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 18 2016 *)

Formula

G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).

A168681 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186878, 516560616, 1549681800, 4649045256, 13947135336, 41841404712, 125524210248, 376572619080, 1129717822248
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 172186878, A003946(17) = 172186884. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003946 (G.f.: (1+x)/(1-3*x)).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18) )); // G. C. Greubel, Feb 22 2021
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18), {t, 0, 40}], t] (* G. C. Greubel, Aug 03 2016, Feb 22 2021 *)
    coxG[{17, 3, -2, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Feb 22 2021 *)
  • Sage
    def A168681_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18) ).list()
    A168681_list(40) # G. C. Greubel, Feb 22 2021

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^17 - 2*t^16 - 2*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
G.f.: (1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18). - G. C. Greubel, Feb 22 2021
Previous Showing 51-60 of 126 results. Next