A155118
Array T(n,k) read by antidiagonals: the k-th term of the n-th iterated differences of A140429.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 5, 8, 12, 18, 27, 11, 16, 24, 36, 54, 81, 21, 32, 48, 72, 108, 162, 243, 43, 64, 96, 144, 216, 324, 486, 729, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 171, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 341, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0
The array starts in row n=0 with columns k>=0 as:
0 1 3 9 27 81 243 729 2187 ... A140429;
1 2 6 18 54 162 486 1458 4374 ... A025192;
1 4 12 36 108 324 972 2916 8748 ... A003946;
3 8 24 72 216 648 1944 5832 17496 ... A080923;
5 16 48 144 432 1296 3888 11664 34992 ... A257970;
11 32 96 288 864 2592 7776 23328 69984 ...
21 64 192 576 1728 5184 15552 46656 139968 ...
Antidiagonal triangle begins as:
0;
1, 1;
1, 2, 3;
3, 4, 6, 9;
5, 8, 12, 18, 27;
11, 16, 24, 36, 54, 81;
21, 32, 48, 72, 108, 162, 243;
43, 64, 96, 144, 216, 324, 486, 729;
85, 128, 192, 288, 432, 648, 972, 1458, 2187; - _G. C. Greubel_, Mar 25 2021
-
t:= func< n,k | k eq 0 select (2^(n-k) -(-1)^(n-k))/3 else 2^(n-k)*3^(k-1) >;
[t(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 25 2021
-
T:=proc(n,k)if(k>0)then return 2^n*3^(k-1):else return (2^n - (-1)^n)/3:fi:end:
for d from 0 to 8 do for m from 0 to d do print(T(d-m,m)):od:od: # Nathaniel Johnston, Apr 13 2011
-
t[n_, k_]:= If[k==0, (2^(n-k) -(-1)^(n-k))/3, 2^(n-k)*3^(k-1)];
Table[t[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
-
def A155118(n,k): return (2^(n-k) -(-1)^(n-k))/3 if k==0 else 2^(n-k)*3^(k-1)
flatten([[A155118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 25 2021
A163315
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 318, 936, 2760, 8136, 23976, 70662, 208260, 613788, 1808964, 5331420, 15712878, 46309320, 136483800, 402247944, 1185513624, 3493970742, 10297504260, 30349021740, 89445276900, 263615006412, 776931706398
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6), {x,0,30}], x] (* or *) Join[{1}, LinearRecurrence[{2,2,2,2,-3}, {1,4,12,36,108,318}, 30]] (* G. C. Greubel, Dec 18 2016 *)
coxG[{4, 3, -2}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6)) \\ G. C. Greubel, Dec 18 2016
-
((1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A164353
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2910, 8712, 26088, 78120, 233928, 700488, 2097576, 6281094, 18808452, 56321052, 168650820, 505017180, 1512250884, 4528366236, 13559985966, 40604758920, 121589096856, 364092999624, 1090259865432
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8) )); // G. C. Greubel, Aug 24 2019
-
seq(coeff(series((1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 24 2019
-
CoefficientList[Series[(x^7 + 2 x^6 + 2 x^5 + 2 x^4 + 2 x^3 + 2 x^2 + 2 x + 1)/(3 x^7 - 2 x^6 - 2 x^5 - 2 x^4 - 2 x^3 - 2 x^2 - 2 x + 1), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
coxG[{7,3,-2,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 15 2015 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8)) \\ G. C. Greubel, Sep 15 2017
-
def A164353_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8)).list()
A164353_list(30) # G. C. Greubel, Aug 24 2019
A164697
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2916, 8742, 26208, 78576, 235584, 706320, 2117664, 6349104, 19035648, 57071982, 171111132, 513019140, 1538115228, 4611520836, 13826093148, 41452886916, 124282529820, 372619336494, 1117173669768
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,2,2,2,2,-3).
-
a:=[4, 12, 36, 108, 324, 972, 2916, 8742];; for n in [9..30] do a[n]:=2*Sum([1..7], j-> a[n-j]) -3*a[n-8]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^8)/(1-3*t+5*t^8-3*t^9) )); // G. C. Greubel, Sep 16 2019
-
seq(coeff(series((1+t)*(1-t^8)/(1-3*t+5*t^8-3*t^9), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 16 2019
-
CoefficientList[Series[(x^8 +2x^7 +2x^6 +2x^5 +2x^4 +2x^3 +2x^2 +2x +1)/( 3x^8 -2x^7 -2x^6 -2x^5 -2x^4 -2x^3 -2x^2 -2x +1), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
coxG[{8,3,-2,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 03 2019 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^8)/(1-3*t+5*t^8-3*t^9)) \\ G. C. Greubel, Sep 16 2019
-
def A164697_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^8)/(1-3*t+5*t^8-3*t^9)).list()
A164697_list(30) # G. C. Greubel, Sep 16 2019
A165756
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78726, 236160, 708432, 2125152, 6375024, 19123776, 57367440, 172090656, 516236976, 1548605952, 4645502958, 13935564252, 41803859076, 125403076764, 376183730628, 1128474698076
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,2,2,2,2,2,2,-3).
-
a:=[4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78726];; for n in [11..30] do a[n]:=2*Sum([1..9], j-> a[n-j]) -3*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-3*t+5*t^10-3*t^11) )); // G. C. Greubel, Sep 16 2019
-
seq(coeff(series((1+t)*(1-t^10)/(1-3*t+5*t^10-3*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Sep 16 2019
-
CoefficientList[Series[(1+t)*(1-t^10)/(1-3*t+5*t^10-3*t^11), {t, 0, 30}], t] (* G. C. Greubel, Apr 07 2016 *)
coxG[{10, 3, -2}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 16 2019 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-3*t+5*t^10-3*t^11)) \\ G. C. Greubel, Sep 16 2019
-
def A165756_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^10)/(1-3*t+5*t^10-3*t^11)).list()
A165756_list(30) # G. C. Greubel, Sep 16 2019
A166328
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236190, 708552, 2125608, 6376680, 19129608, 57387528, 172158696, 516464424, 1549358280, 4647969864, 13943594664, 41829839238, 125486683524, 376451548188, 1129329137988
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,2,2,2,2,2,2,2,-3).
-
seq(coeff(series((1+t)*(1-t^11)/(1-3*t+5*t^11-3*t^12), t, n+1), t, n), n = 0..30); # G. C. Greubel, Mar 12 2020
-
CoefficientList[Series[(1+t)*(1-t^11)/(1-3*t+5*t^11-3*t^12), {t,0,30}], t] (* G. C. Greubel, May 09 2016 *)
coxG[{11, 3, -2}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 12 2020 *)
-
def A166328_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^11)/(1-3*t+5*t^11-3*t^12) ).list()
A166328_list(30) # G. C. Greubel, Aug 10 2019
A166858
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125758, 6377256, 19131720, 57395016, 172184616, 516552552, 1549653768, 4648949640, 13946813928, 41840336808, 125520695496, 376561141704, 1129680590760
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -3).
-
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 25 2016 *)
coxG[{13,3,-2,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 27 2022 *)
A167105
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377286, 19131840, 57395472, 172186272, 516558384, 1549673856, 4649017680, 13947041376, 41841089136, 125523162432, 376569172368, 1129706572320
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -3).
-
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1) / (3*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
coxG[{14,3,-2,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 11 2016 *)
A167649
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131870, 57395592, 172186728, 516560040, 1549679688, 4649037768, 13947109416, 41841316584, 125523914760, 376571639304, 1129714602984
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -3).
-
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 18 2016 *)
A168681
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186878, 516560616, 1549681800, 4649045256, 13947135336, 41841404712, 125524210248, 376572619080, 1129717822248
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-3).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18) )); // G. C. Greubel, Feb 22 2021
-
CoefficientList[Series[(1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18), {t, 0, 40}], t] (* G. C. Greubel, Aug 03 2016, Feb 22 2021 *)
coxG[{17, 3, -2, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Feb 22 2021 *)
-
def A168681_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18) ).list()
A168681_list(40) # G. C. Greubel, Feb 22 2021
Comments