cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A332501 Decimal expansion of the number u' in [0,2 Pi] such that the line normal to the graph of y = sin x at (u', sin u') passes through the point (3 Pi/4,0).

Original entry on oeis.org

2, 7, 2, 5, 7, 3, 7, 0, 5, 6, 7, 9, 9, 9, 2, 5, 2, 4, 9, 6, 7, 4, 6, 3, 8, 5, 8, 1, 2, 9, 6, 5, 6, 3, 8, 6, 5, 1, 5, 4, 5, 8, 2, 9, 2, 8, 9, 8, 1, 7, 0, 8, 0, 9, 8, 2, 1, 4, 0, 4, 8, 7, 6, 2, 1, 1, 7, 5, 0, 4, 6, 3, 2, 1, 5, 6, 4, 3, 0, 5, 4, 6, 2, 7, 0, 7
Offset: 1

Views

Author

Clark Kimberling, May 05 2020

Keywords

Comments

Let S and C denote the graphs of y = sin x and y = cos x. For each point (u, sin u) on S, let S(u) be the line normal to S at (u, sin u), and let (snc u, cos(snc u)) be the point of intersection of S(u) and C. Let d(u) be the distance from (u,sin u) to (snc u, cos(snc u)). We call d(u) the u-normal distance from S to C and note that in [0,Pi], there is a unique number u' such that d(u') > d(u) for all real numbers u except those of the form u' + k*Pi. We call d(u') the maximal normal distance between sine and cosine, and we call snc the sine-normal-to-cosine function.
The distance from (u',sin u') to its reflection in (3 Pi/4,0) is the maximal normal distance between sine and cosine. This distance is slightly greater than 1. See A332500.

Examples

			2.7257370567999252496746385812...
		

Crossrefs

Programs

Formula

Equals (3/4)*Pi + d/2 = A177870 + A003957/2, where d is the Dottie number. - Gleb Koloskov, Jun 17 2021

A377479 Decimal expansion of the smallest positive real root of the equation cos(x) + x*sin(x) = 0.

Original entry on oeis.org

2, 7, 9, 8, 3, 8, 6, 0, 4, 5, 7, 8, 3, 8, 8, 7, 1, 3, 6, 7, 2, 0, 2, 4, 8, 9, 0, 3, 1, 3, 9, 5, 7, 0, 6, 7, 0, 6, 3, 4, 6, 0, 8, 7, 9, 0, 7, 5, 4, 1, 0, 1, 0, 4, 3, 5, 9, 6, 4, 2, 1, 7, 1, 0, 5, 5, 6, 2, 4, 9, 5, 0, 8, 2, 7, 8, 5, 3, 5, 3, 2, 2, 6, 2, 5, 5, 0, 6, 5, 6, 8, 5, 3, 8, 4, 2, 6, 8, 7, 9
Offset: 1

Views

Author

Stefano Spezia, Oct 29 2024

Keywords

Comments

The absolute value of the x-coordinate of the tangent point between the cosine graph and the straight line through the origin.

Examples

			2.79838604578388713672024890313957...
		

Crossrefs

Programs

  • Mathematica
    ndigits=100; First[RealDigits[First[x/.NSolve[Cos[x]+x Sin[x]==0,x,ndigits]],10,ndigits]]
    (* or *)
    RealDigits[BesselJZero[-3/2, 1], 10, 100][[1]] (* Vaclav Kotesovec, Oct 31 2024 *)
  • PARI
    \\ Note: besseljzero not guaranteed to work here since -3/2 < 0.
    solve(x=2,3, cos(x)+x*sin(x)) \\ Charles R Greathouse IV, Jan 23 2025

A121967 Binary expansion of root of cos x = x.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Ben Branman, Sep 25 2008

Keywords

Crossrefs

Cf. A003957.

Programs

  • Mathematica
    BaseForm[FindRoot[Cos[x] == x, {x, {1}}, WorkingPrecision -> 1000], 2]

A125579 Decimal expansion of positive root of x^3 = cos(x).

Original entry on oeis.org

8, 6, 5, 4, 7, 4, 0, 3, 3, 1, 0, 1, 6, 1, 4, 4, 4, 6, 6, 2, 0, 6, 8, 5, 9, 0, 1, 1, 8, 6, 2, 2, 8, 7, 4, 7, 7, 9, 2, 9, 1, 1, 9, 3, 1, 8, 1, 8, 9, 3, 5, 5, 0, 0, 8, 8, 9, 2, 7, 9, 9, 1, 5, 8, 5, 5, 4, 4, 7, 0, 0, 6, 0, 5, 6, 0, 2, 1, 5, 6, 0, 5, 1, 4, 0, 6, 4, 2, 7, 2, 3, 1, 9, 5, 6, 2, 8, 0, 2, 2, 8, 0
Offset: 0

Views

Author

Denton J. Dailey (djd1497(AT)aol.com), Jan 03 2007

Keywords

Examples

			0.865474033101614446620685901186228747792911931818935...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[FindRoot[Cos[x] == x^3, {x, {.7, 1}}, WorkingPrecision -> 120][[1, 2, 1]], 10, 111][[1]]
  • PARI
    solve(x=0,1,cos(x)-x^3) \\ Charles R Greathouse IV, Apr 16 2014

Formula

x^3 = cos(x)

A125580 Decimal expansion of positive root of x^3 = sin(x).

Original entry on oeis.org

9, 2, 8, 6, 2, 6, 3, 0, 8, 7, 3, 1, 7, 3, 4, 4, 2, 6, 0, 2, 9, 3, 4, 9, 5, 3, 2, 7, 0, 2, 6, 5, 4, 4, 9, 5, 0, 0, 5, 6, 8, 0, 7, 9, 6, 9, 0, 4, 0, 4, 0, 0, 7, 3, 5, 5, 1, 4, 1, 1, 2, 4, 7, 9, 7, 1, 5, 9, 3, 6, 4, 7, 7, 6, 1, 0, 2, 1, 4, 5, 6, 9, 4, 2, 2, 9, 5, 3, 5, 5, 0, 0, 6, 8, 1, 4, 9, 2, 5, 9, 6, 2
Offset: 0

Views

Author

Denton J. Dailey (djd1497(AT)aol.com), Jan 03 2007

Keywords

Comments

Three real roots: X = 0, +-0.9286263087...

Examples

			0.928626308731734426029349532702654495005680...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[FindRoot[Sin[x] == x^3, {x, {.8, 1}}, WorkingPrecision -> 120][[1, 2, 1]], 10, 111][[1]]
  • PARI
    solve(x=.9,1,sin(x)-x^3) \\ Charles R Greathouse IV, Apr 16 2014

Formula

x^3 = sin(x)

A133741 Decimal expansion of offset at which two unit disks overlap by half each's area.

Original entry on oeis.org

8, 0, 7, 9, 4, 5, 5, 0, 6, 5, 9, 9, 0, 3, 4, 4, 1, 8, 6, 3, 7, 9, 2, 3, 4, 8, 0, 1, 3, 2, 6, 3, 0, 8, 8, 5, 8, 0, 4, 4, 7, 1, 9, 2, 9, 1, 4, 8, 1, 9, 6, 8, 4, 4, 5, 0, 0, 1, 9, 5, 2, 0, 3, 4, 6, 7, 7, 4, 1, 0, 9, 9, 9, 4, 2, 5, 9, 0, 7, 0, 7, 0, 0, 2, 4, 8, 6, 7, 8, 0, 3, 3, 0, 4, 4, 5, 4, 5, 7, 4, 1, 8, 9, 8, 2
Offset: 0

Views

Author

Eric W. Weisstein, Sep 22 2007

Keywords

Examples

			0.8079455065990344186379234801326308858044719291481968445...
		

Crossrefs

Cf. A003957. Equals twice A086751.

Programs

  • Mathematica
    d0 = d /. FindRoot[ 2*ArcCos[d/2] - d/2*Sqrt[4 - d^2] == Pi/2, {d, 1}, WorkingPrecision -> 110]; RealDigits[d0][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 26 2012, after Eric W. Weisstein *)
  • PARI
    default(realprecision, 100); solve(x=0,1, 2*acos(x/2) - (x/2)*sqrt(4-x^2) - Pi/2) \\ G. C. Greubel, Nov 16 2018
    
  • PARI
    d=solve(x=0,1,cos(x)-x);sqrt(2-2*sqrt(1-d^2)) \\ Gleb Koloskov, Feb 27 2021

Formula

Equals sqrt(1+A003957) - sqrt(1-A003957) = sqrt(2-2*sqrt(1-A003957^2)) = 2*A086751. - Gleb Koloskov, Feb 26 2021

A138284 Decimal expansion of the negative real part of z0, the smallest second-quadrant solution of z = Cos(z).

Original entry on oeis.org

2, 4, 8, 6, 8, 8, 5, 6, 9, 8, 9, 0, 8, 5, 6, 0, 2, 3, 0, 6, 9, 6, 9, 5, 7, 0, 3, 4, 3, 5, 0, 6, 5, 7, 9, 7, 9, 4, 2, 2, 8, 2, 8, 5, 5, 2, 8, 8, 8, 8, 3, 1, 4, 7, 8, 9, 7, 8, 2, 3, 9, 7, 8, 1, 6, 1, 9, 0, 4, 3, 3, 3, 9, 9, 2, 7, 0, 8, 7, 3, 8, 3, 1, 1, 3, 1, 1, 1, 1, 1, 5, 7, 7, 9, 9, 2, 5, 7, 9, 9, 0, 6, 1, 8, 1
Offset: 1

Views

Author

T. D. Noe, Mar 12 2008

Keywords

Comments

z0 is a repelling fixed point of Cos(z). The only fixed point on the real axis is 0.73908... (A003957), which is an attracting fixed point.

Examples

			2.486885698908560230696957...
		

Crossrefs

Cf. A138285 (imaginary part).

Programs

  • Mathematica
    z0 = FindRoot[{Re[Cos[x+I*y]]==x, Im[Cos[x+I*y]]==y}, {{x,-2},{y,2}}, WorkingPrecision->150]; RealDigits[z0[[1,2]]]

A138285 Decimal expansion of the imaginary part of z0, the smallest second-quadrant solution of z = Cos(z).

Original entry on oeis.org

1, 8, 0, 9, 3, 6, 1, 3, 4, 1, 2, 9, 5, 7, 0, 3, 3, 1, 9, 0, 1, 6, 2, 7, 6, 1, 0, 0, 1, 9, 4, 0, 1, 1, 3, 2, 5, 6, 0, 0, 0, 7, 6, 2, 2, 4, 4, 0, 5, 3, 8, 5, 5, 8, 8, 2, 4, 4, 6, 6, 5, 4, 6, 2, 4, 8, 3, 7, 9, 0, 4, 3, 8, 3, 7, 3, 5, 7, 3, 2, 5, 4, 2, 8, 6, 7, 4, 8, 6, 5, 8, 9, 1, 4, 1, 1, 1, 7, 0, 3, 0, 8, 2, 4, 4
Offset: 1

Views

Author

T. D. Noe, Mar 12 2008

Keywords

Comments

z0 is a repelling fixed point of Cos(z). The only fixed point on the real axis is 0.73908... (A003957), which is an attracting fixed point.

Examples

			1.809361341295703319016276...
		

Crossrefs

Cf. A138284 (real part).

Programs

  • Mathematica
    z0 = FindRoot[{Re[Cos[x+I*y]]==x, Im[Cos[x+I*y]]==y}, {{x,-2},{y,2}}, WorkingPrecision->150]; RealDigits[z0[[2,2]]]

A184952 High water marks in A177413.

Original entry on oeis.org

0, 1, 2, 4, 40, 52, 82, 4839, 5813, 8366, 11153, 46254, 1040968, 12925493
Offset: 1

Views

Author

Ben Branman, Dec 21 2011

Keywords

Comments

12925493 does not appear in A177413 until n=292558.

Examples

			The first few terms of the continued fraction of the Dottie number are 0, 1, 2, 1, 4, 1, 40 of which the high water marks are 0, 1, 2, 4, 40...
		

Crossrefs

Programs

  • Mathematica
    z = x /. FindRoot[x == Cos[x], {x, 0},
       WorkingPrecision -> 100000]; data = ContinuedFraction[z];
    g[list_] :=
    Delete[list,
      Transpose[{DeleteCases[
         Table[If[list[[n]] < list[[n - 1]], n, no], {n, 2,
           Length[list]}], no]}]];

Extensions

Offset changed by Andrew Howroyd, Aug 10 2024

A185185 Indices of record values in A177413.

Original entry on oeis.org

0, 1, 2, 4, 6, 19, 29, 53, 2035, 3995, 5328, 10141, 14675, 292557
Offset: 1

Views

Author

Ben Branman, Dec 22 2011

Keywords

Crossrefs

Programs

  • Mathematica
    z = x /. FindRoot[x == Cos[x], {x, 0},
       WorkingPrecision -> 1000000]; data = ContinuedFraction[z];
    g[list_] :=
    Delete[list,
      Transpose[{DeleteCases[
         Table[If[list[[n]] < list[[n - 1]], n, no], {n, 2,
           Length[list]}], no]}]]; p =
    FixedPoint[g, DeleteDuplicates[data]]; Flatten[
    Map[Position[data, #, 1, 1] &, p, {1}]]-1

Formula

A177413(a(n)) = A184952(n).

Extensions

Offset changed by Andrew Howroyd, Aug 10 2024
Previous Showing 31-40 of 43 results. Next