cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 102 results. Next

A003966 Möbius transform of A003958.

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 5, 0, 2, 0, 9, 0, 11, 0, 3, 0, 15, 0, 17, 0, 5, 0, 21, 0, 12, 0, 4, 0, 27, 0, 29, 0, 9, 0, 15, 0, 35, 0, 11, 0, 39, 0, 41, 0, 6, 0, 45, 0, 30, 0, 15, 0, 51, 0, 27, 0, 17, 0, 57, 0, 59, 0, 10, 0, 33, 0, 65, 0, 21, 0, 69, 0, 71, 0, 12, 0, 45, 0, 77, 0, 8, 0, 81, 0, 45, 0, 27, 0, 87, 0, 55, 0, 29, 0, 51, 0, 95, 0, 18
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A003966 := proc(n) option remember; local pf,p ; if n = 1 then 1; else pf := ifactors(n)[2] ; if nops(pf) = 1 then p := op(1,pf) ; (op(1,p)-2)*(op(1,p)-1)^(op(2,p)-1)  ; else mul(procname(op(1,p)^op(2,p)),p=pf) ; end if; end if; end proc:
    seq(A003966(n),n=1..100) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    f[p_, e_] := (p - 2) (p - 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 23 2022 *)
  • PARI
    a(n) = {my(f=factor(n)); for (i=1, #f~, p = f[i, 1]; f[i, 1] = (p-2)*(p-1)^(f[i,2]-1); f[i, 2] = 1); factorback(f);} \\ Michel Marcus, Feb 27 2015
    
  • PARI
    A003958(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1]--); factorback(f);
    A003966(n) = sumdiv(n,d,moebius(n/d)*A003958(d)); \\ Antti Karttunen, Oct 24 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-p*X+X)*(1-X))[n], ", ")) \\ Vaclav Kotesovec, Feb 11 2023

Formula

Multiplicative with a(p^e) = (p-2)(p-1)^(e-1). - David W. Wilson, Sep 01 2001
Dirichlet inverse b(n) is multiplicative with b(p^e) = 2-p for prime p and e > 0 (A276833). - Werner Schulte, Oct 25 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2*Pi^2/(105*zeta(3)) = 0.1563923... . - Amiram Eldar, Oct 23 2022
From Vaclav Kotesovec, Feb 11 2023: (Start)
Dirichlet g.f.: 1/zeta(s) * Product_{p prime} 1 / (1 - p^(1-s) + p^(-s)).
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 + (p^(1-s)-2) / (1 - p + p^s)), (with a product that converges for s=2). (End)

Extensions

More terms from Antti Karttunen, Oct 24 2018

A064522 For an integer n with prime factorization p1*p2*p3* ... *pn let n* = (p1-1)*(p2-1)*(p3-1)* ... *(pn-1) (A003958); sequence gives n such that n is divisible by n*.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 36, 40, 48, 64, 72, 80, 84, 96, 120, 128, 144, 160, 168, 192, 216, 240, 256, 272, 288, 312, 320, 336, 384, 400, 432, 440, 480, 504, 512, 544, 576, 624, 640, 672, 720, 768, 800, 864, 880, 960, 1008, 1024, 1088, 1152, 1248, 1280
Offset: 1

Views

Author

Vladeta Jovovic, Oct 07 2001

Keywords

Crossrefs

Programs

  • PARI
    nsm(n)= { local(f,p=1); f=factor(n); for(i=1, matsize(f)[1], p*=(f[i, 1] - 1)^f[i, 2]); return(p) } { n=0; for (m=1, 10^9, if (m%nsm(m) == 0, write("b064522.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 17 2009

A348998 a(n) = A348928(A276086(n)), where A348928(n) = gcd(n, A003958(n)), and A003958 is multiplicative with a(p^e) = (p-1)^e, and A276086 gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Comments

After each primorial number (A002110), the apparent periodicity grows more complex.

Crossrefs

Programs

  • PARI
    A348998(n) = { my(m1=1, m2=1, p=2); while(n, m1 *= (p^(n%p)); m2 *= ((p-1)^(n%p)); n = n\p; p = nextprime(1+p)); gcd(m1,m2); };

A353795 Numbers k such that k divides A353794(k), where A353794(n) = A003958(A003973(n)) * A064989(A003973(n)).

Original entry on oeis.org

1, 4, 12, 24, 36, 44, 72, 96, 112, 132, 180, 220, 360, 384, 396, 400, 480, 560, 660, 784, 832, 864, 1044, 1056, 1188, 1200, 1344, 1920, 1980, 2088, 2352, 2376, 2496, 2800, 3168, 3600, 3920, 4320, 4736, 5220, 5280, 5376, 5824, 5940, 6800, 6912, 7056, 7200, 7488, 8400, 8800, 9504, 9900, 10000, 10440, 10800, 11484
Offset: 1

Views

Author

Antti Karttunen, May 12 2022

Keywords

Comments

Of 2608 initial terms, only 188 are not in A353796. The first three of these are: 400, 784, 832.

Crossrefs

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A353794(n) = { my(s=sigma(A003961(n))); (A003958(s)*A064989(s)); };
    isA353795(n) = !(A353794(n)%n);

A003967 Inverse Möbius transform of A003958.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 4, 7, 10, 11, 9, 13, 14, 15, 5, 17, 14, 19, 15, 21, 22, 23, 12, 21, 26, 15, 21, 29, 30, 31, 6, 33, 34, 35, 21, 37, 38, 39, 20, 41, 42, 43, 33, 35, 46, 47, 15, 43, 42, 51, 39, 53, 30, 55, 28, 57, 58, 59, 45, 61, 62, 49, 7, 65, 66, 67, 51, 69, 70, 71, 28, 73
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A003958, A341635 (Dirichlet inverse).

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003967(n) = sumdiv(n,d,A003958(d)); \\ Antti Karttunen, Feb 11 2022
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X)/(1 - p*X + X))[n], ", ")) \\ Vaclav Kotesovec, Feb 11 2022

Formula

Multiplicative with a(p^e) = e+1 if p = 2; ((p-1)^(e+1)-1)/(p-2) if p > 2. - David W. Wilson, Sep 01 2001
Dirichlet g.f.: zeta(s) * Product_{p prime} 1 / (1 - p^(1-s) + p^(-s)). - Ilya Gutkovskiy, Feb 11 2022
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / (1890 * zeta(3)). - Vaclav Kotesovec, Feb 11 2022

Extensions

More terms from David W. Wilson, Aug 29 2001

A324044 a(n) = A003958(n) - A033879(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, -1, 2, 0, 6, 0, 2, 2, 0, 0, 7, 0, 6, 2, 2, 0, 14, -3, 2, -6, 6, 0, 20, 0, 0, 2, 2, 2, 23, 0, 2, 2, 14, 0, 24, 0, 6, 4, 2, 0, 30, -5, 9, 2, 6, 0, 20, 2, 14, 2, 2, 0, 56, 0, 2, 2, 0, 2, 32, 0, 6, 2, 28, 0, 55, 0, 2, 6, 6, 2, 36, 0, 30, -25, 2, 0, 68, 2, 2, 2, 14, 0, 70, 2, 6, 2, 2, 2, 62, 0, 11, -2, 33, 0, 44, 0, 14, 30
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2019

Keywords

Crossrefs

Cf. also A319687, A323911.

Programs

Formula

a(n) = A003958(n) - A033879(n).

A348975 a(n) = A003415(n) + A003958(n) - n, where A003415 is the arithmetic derivative and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 5, 1, 1, 0, 6, 0, 1, 1, 17, 0, 7, 0, 8, 1, 1, 0, 22, 1, 1, 8, 10, 0, 9, 0, 49, 1, 1, 1, 28, 0, 1, 1, 32, 0, 11, 0, 14, 10, 1, 0, 66, 1, 11, 1, 16, 0, 35, 1, 42, 1, 1, 0, 40, 0, 1, 12, 129, 1, 15, 0, 20, 1, 13, 0, 88, 0, 1, 12, 22, 1, 17, 0, 100, 43, 1, 0, 52, 1, 1, 1, 62, 0, 49, 1, 26, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

No negative terms. See comments in A322582.
This is the difference between the arithmetic derivative of n [= A003415(n)] and its guaranteed lower bound A322582(n) [= n - A003958(n)].

Crossrefs

Cf. also A348970 for the corresponding difference from a guaranteed upper bound.

Programs

  • Mathematica
    MapAt[# + 1 &, Array[If[# < 2, 0, # Total[#2/#1 & @@@ #2]] + Times @@ Map[(#1 - 1)^#2 & @@ # &, #2] - #1 & @@ {#, FactorInteger[#]} &, 95], 1] (* Michael De Vlieger, Mar 15 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348975(n) = (A003415(n) - A322582(n));

Formula

a(n) = A003415(n) - A322582(n).
a(n) = A003958(n) + A168036(n).

A351448 Odd numbers k for which A003958(sigma(k)) = 2*A003958(k), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

8181, 400869, 1507005, 3918213, 11151837, 22002273, 26669007, 47319957, 58170393, 73843245, 75825981, 83488077, 94338513, 108277641, 119656197, 126889821, 137740257, 163057941, 184758813, 191992437, 199226061, 202842873, 204768225, 220926933, 228160557, 258457473, 264328677, 277602471, 300496797
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Comments

Odd numbers k such that A351442(k) = 2*A003958(k).
Any hypothetical odd term of A005820, if such a term exists, should appear in this sequence, in A347391, and in A016754 (odd squares).
None of the first 33 terms is a square, and all of them except 75825981 and 204768225 are multiples of 81. Note that 81 is one of the terms of A008848 (and of A231484), squares whose sum of divisors is also square (with A000203(81) = 121).

Crossrefs

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    isA351448(n) = (n%2 && (A003958(sigma(n)) == 2*A003958(n)));

A353634 Nondeficient numbers k such that phi(k) = phi(sigma(k)) and A003958(k) = A003958(sigma(k)).

Original entry on oeis.org

234728, 280904, 461168, 463112, 604136, 742664, 909872, 996008, 1065896, 1191944, 1204424, 1224392, 1465256, 1527656, 1620008, 1757288, 1758536, 1956848, 1985672, 2081768, 2102984, 2358824, 2376296, 2405552, 2518568, 2543528, 2589704, 2670824, 2820584, 2899208, 2912936, 3014024, 3151304, 3196232, 3374696, 3432104
Offset: 1

Views

Author

Antti Karttunen, May 04 2022

Keywords

Crossrefs

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    isA353634(n) = { my(s=sigma(n)); if(s<(2*n),return(0)); ((eulerphi(s)==eulerphi(n)) && (A003958(s)==A003958(n))); };

A353635 Numbers k such that phi(k) = phi(sigma(k)) and A003958(k) = A003958(sigma(k)).

Original entry on oeis.org

1, 26, 74, 122, 146, 314, 386, 554, 626, 794, 842, 914, 1082, 1226, 1322, 1346, 1466, 1514, 1754, 1994, 2186, 2306, 2402, 2426, 2474, 2642, 2762, 2906, 3242, 3314, 3506, 3746, 3866, 3986, 4034, 4274, 4682, 4946, 5114, 5186, 5594, 5714, 5834, 6122, 6434, 6506, 6626, 7034, 7466, 8042, 8114, 8354, 8522, 8546, 8714, 8882
Offset: 1

Views

Author

Antti Karttunen, May 04 2022

Keywords

Comments

Question 1: Are there any odd terms after the initial 1?
Interestingly, most of the terms seem to belong to a set where the abundancy index (ratio sigma(n)/n) converges towards 3/2. But there are exceptions, see A353634 for example.

Crossrefs

Intersection of A006872 and A351446. A353634 lists the nondeficient terms.

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    isA353635(n) = { my(s=sigma(n)); ((eulerphi(s)==eulerphi(n)) && (A003958(s)==A003958(n))); };
Previous Showing 31-40 of 102 results. Next