cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A185073 Numbers n such that (34^n - 1)/33 is prime.

Original entry on oeis.org

13, 1493, 5851, 6379, 125101
Offset: 1

Views

Author

Robert Price, Mar 10 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], PrimeQ[(34^#-1)/33]&]
  • PARI
    isok(n) = isprime((34^n-1)/33); \\ Michel Marcus, Mar 13 2016
    
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime((34^n - 1)/33), print1(n, ", "))); \\ Altug Alkan, Mar 13 2016

Extensions

a(5)=125101 corresponds to a probable prime discovered by Paul Bourdelais, Nov 20 2017

A198725 Primes of the form (6^n-11)/5.

Original entry on oeis.org

5, 41, 257, 1553, 15672832817, 121871948002097, 4387390128075569, 161656255492952812128627920091307258673, 34917751186477807419783630739722367873841
Offset: 1

Views

Author

Gilbert Mozzo, Oct 29 2011

Keywords

Comments

These primes are also given by sum 6^k -1 with k>0 and are then companions of A165210 which corresponds also to sum 6^k +1 with k>0. (Be careful: there is a shifting between the k and the n values).
Corresponding exponents n are in A199165. - Gilbert Mozzo, Nov 05 2011

Examples

			(6^4-11)/5=257, which is in the sequence because it is prime.
		

Crossrefs

Programs

  • Magma
    [(6^n-11)/5: n in [1..10^3] | IsPrime((6^n-11) div 5)];
    
  • Mathematica
    lst={}; Do[If[PrimeQ[(6^n-11)/5], Print[(6^n-11)/5]; AppendTo[lst, (6^n-11)/5]], {n, 10^6}];
  • PARI
    for(n=1,1e4,if(ispseudoprime(t=6^n\5-2),print1(t", "))) \\ Charles R Greathouse IV, Nov 01 2011

A199165 Numbers n such that (6^n-11)/5 is prime.

Original entry on oeis.org

2, 3, 4, 5, 14, 19, 21, 50, 53, 136, 146, 1255, 1448, 1839, 2053, 2496, 4060, 5041, 8410, 14090, 14940, 19759, 29871, 44836, 78175, 114398, 120946, 137845, 461108, 727496, 840316
Offset: 1

Views

Author

Gilbert Mozzo, Nov 03 2011

Keywords

Examples

			a(4) = 5  because  (6^5-11)/5 = 1553  is prime.
		

Crossrefs

Programs

  • Mathematica
    lst={}; Do[If[PrimeQ[(6^n-11)/5], Print[n]; AppendTo[lst, n]], {n, 10^6}]; lst
  • PARI
    is(n)=ispseudoprime((6^n-11)/5) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(23)-a(28) are probable primes discovered by Paul Bourdelais, Nov 15 2011
a(23)-a(28) independently confirmed as probable primes using Mathematica PrimeQ function by Gilbert Mozzo, Nov 21 2011
a(29) corresponds to a probable prime discovered by Paul Bourdelais, Apr 25 2019
a(30) corresponds to a probable prime discovered by Paul Bourdelais, Aug 12 2019
a(31) corresponds to a probable prime discovered by Paul Bourdelais, Jun 18 2020

A247093 Triangle read by rows: T(m,n) = smallest odd prime p such that (m^p-n^p)/(m-n) is prime (0

Original entry on oeis.org

3, 3, 3, 0, 0, 3, 3, 5, 13, 3, 3, 0, 0, 0, 5, 5, 3, 3, 5, 3, 3, 3, 0, 3, 0, 19, 0, 7, 0, 3, 0, 0, 3, 0, 3, 7, 19, 0, 3, 0, 0, 0, 31, 0, 3, 17, 5, 3, 3, 5, 3, 5, 7, 5, 3, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 5, 3, 7, 5, 5, 3, 7, 3, 3, 251, 3, 17, 3, 0, 5, 0, 151, 0, 0, 0, 59, 0, 5, 0, 3, 3, 5, 0, 1097, 0, 0, 3, 3, 0, 0, 7, 0, 17, 3
Offset: 1

Views

Author

Eric Chen, Nov 18 2014

Keywords

Comments

T(m,n) is 0 if and only if m and n are not coprime or A052409(m) and A052409(n) are not coprime. (The latter has some exceptions, like T(8,1) = 3. In fact, if p is a prime and does not equal to A052410(gcd(A052409(m),A052409(n))), then (m^p-n^p)/(m-n) is composite, so if it is not 0, then it is A052410(gcd(A052409(m),A052409(n))).) - Eric Chen, Nov 26 2014
a(i) = T(m,n) corresponds only to probable primes for (m,n) = {(15,4), (18,1), (19,18), (31,6), (37,22), (37,25), ...} (i={95, 137, 171, 441, 652, 655, ...}). With the exception of these six (m,n), all corresponding primes up to a(663) are definite primes. - Eric Chen, Nov 26 2014
a(n) is currently known up to n = 663, a(664) = T(37, 34) > 10000. - Eric Chen, Jun 01 2015
For n up to 1000, a(n) is currently unknown only for n = 664, 760, and 868. - Eric Chen, Jun 01 2015

Examples

			Read by rows:
m\n        1   2   3   4   5   6   7   8   9   10  11
2          3
3          3   3
4          0   0   3
5          3   5   13  3
6          3   0   0   0   5
7          5   3   3   5   3   3
8          3   0   3   0   19  0   7
9          0   3   0   0   3   0   3   7
10         19  0   3   0   0   0   31  0   3
11         17  5   3   3   5   3   5   7   5   3
12         3   0   0   0   3   0   3   0   0   0   3
etc.
		

Crossrefs

Cf. A128164 (n,1), A125713 (n+1,n), A125954 (2n+1,2), A122478 (2n+1,2n-1).
Cf. A000043 (2,1), A028491 (3,1), A057468 (3,2), A059801 (4,3), A004061 (5,1), A082182 (5,2), A121877 (5,3), A059802 (5,4), A004062 (6,1), A062572 (6,5), A004063 (7,1), A215487 (7,2), A128024 (7,3), A213073 (7,4), A128344 (7,5), A062573 (7,6), A128025 (8,3), A128345 (8,5), A062574 (8,7), A173718 (9,2), A128346 (9,5), A059803 (9,8), A004023 (10,1), A128026 (10,3), A062576 (10,9), A005808 (11,1), A210506 (11,2), A128027 (11,3), A216181 (11,4), A128347 (11,5), A062577 (11,10), A004064 (12,1), A128348 (12,5), A062578 (12,11).

Programs

  • Mathematica
    t1[n_] := Floor[3/2 + Sqrt[2*n]]
    m[n_] := Floor[(-1 + Sqrt[8*n-7])/2]
    t2[n_] := n-m[n]*(m[n]+1)/2
    b[n_] := GCD @@ Last /@ FactorInteger[n]
    is[m_, n_] := GCD[m, n] == 1 && GCD[b[m], b[n]] == 1
    Do[k=2, If[is[t1[n], t2[n]], While[ !PrimeQ[t1[n]^Prime[k] - t2[n]^Prime[k]], k++]; Print[Prime[k]], Print[0]], {n, 1, 663}] (* Eric Chen, Jun 01 2015 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1);
    a(m, n) = {if (gcd(m,n) != 1, return (0)); if (gcd(a052409(m), a052409(n)) != 1, return (0)); forprime(p=3,, if (isprime((m^p-n^p)/(m-n)), return (p)););}
    tabl(nn) = {for (m=2, nn, for(n=1, m-1, print1(a(m,n), ", ");); print(););} \\ Michel Marcus, Nov 19 2014
    
  • PARI
    t1(n)=floor(3/2+sqrt(2*n))
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)), 2)
    b(n)=my(k=ispower(n)); if(k, k, n>1)
    a(n)=if(gcd(t1(n),t2(n)) !=1 || gcd(b(t1(n)), b(t2(n))) !=1, 0, forprime(p=3,2^24,if(ispseudoprime((t1(n)^p-t2(n)^p)/(t1(n)-t2(n))), return(p)))) \\ Eric Chen, Jun 01 2015

A294722 Numbers k such that (44^k - 1)/43 is prime.

Original entry on oeis.org

5, 31, 167, 100511
Offset: 1

Views

Author

Paul Bourdelais, Nov 07 2017

Keywords

Comments

The number corresponding to a(4) is a probable prime.
These are the indices of base-44 repunit primes, i.e., numbers k such that A002275(k) interpreted as a base-44 number and converted to decimal is prime. - Felix Fröhlich, Nov 08 2017

Crossrefs

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[(44^# - 1)/43], #, Nothing] &, Prime@Range @ 10000] (* Robert G. Wilson v, Nov 25 2017 *)
  • PARI
    is(n) = ispseudoprime((44^n-1)/43) \\ Felix Fröhlich, Nov 08 2017
  • PFGW
    ABC2 (44^$a-1)/43 // -f{2*$a}
    a: primes from 2 to 1000000
    

A366582 Numbers k such that 6^k + 1 is a semiprime.

Original entry on oeis.org

3, 8, 11, 12, 31, 43, 47, 59, 62, 107, 382, 514, 734, 811
Offset: 1

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			11 is in this sequence because 6^11+1 = 7*51828151 is a semiprime.
		

Crossrefs

A366648 Numbers k such that 4^k + 1 is a semiprime.

Original entry on oeis.org

3, 6, 10, 14, 16, 20, 32, 46, 52, 64, 74, 128, 178, 298, 346, 502, 614, 634, 1912, 60394, 92116
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Examples

			14 is in this sequence because 4^14+1 = 17*15790321 is a semiprime.
		

Crossrefs

Formula

The even terms of A092559 divided by 2. - Max Alekseyev, Jan 04 2024

Extensions

a(19)-a(21) from Max Alekseyev, Jan 04 2024
Previous Showing 11-17 of 17 results.