cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 587 results. Next

A070838 Smallest prime p such that |p - R(p)| = 9n, where R(n) is digit reversal of n, A004086; or 0 if no such prime exists.

Original entry on oeis.org

23, 13, 41, 37, 61, 17, 29, 19, 0, 1231, 211, 0, 0, 0, 0, 0, 0, 0, 0, 1021, 2903, 103, 0, 0, 0, 0, 0, 0, 0, 1031, 2081, 0, 401, 0, 0, 0, 0, 0, 0, 1151, 4073, 0, 0, 307, 0, 0, 0, 0, 0, 1051, 2281, 0, 0, 0, 227, 0, 0, 0, 0, 1061, 2161, 0, 0, 0, 0, 107, 0, 0, 0, 1181, 2371, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amarnath Murthy, May 12 2002

Keywords

Crossrefs

Cf. A070837.

Extensions

Corrected and extended by Sascha Kurz, Jan 02 2003

A071240 Arithmetic mean of k and R(k) where k is a number using only odd digits and R(k) is its digit reversal (A004086).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 22, 33, 44, 55, 22, 33, 44, 55, 66, 33, 44, 55, 66, 77, 44, 55, 66, 77, 88, 55, 66, 77, 88, 99, 111, 212, 313, 414, 515, 131, 232, 333, 434, 535, 151, 252, 353, 454, 555, 171, 272, 373, 474, 575, 191, 292, 393, 494, 595, 212, 313, 414, 515, 616
Offset: 0

Views

Author

Amarnath Murthy, May 20 2002

Keywords

Crossrefs

Programs

  • Maple
    reversal := proc(n) local i, len, new, temp:
        new := 0: temp := n: len := floor(log[10](n+.1))+1:
        for i from 1 to len do
            new := new+irem(temp, 10)*10^(len-i):
            temp := floor(temp/10):
        od:
        RETURN(new):
    end:
    allodd := proc(n) local i, flag, len, temp:
        temp := n: flag := 1: if n=0 then flag := 0 fi: len := floor(log[10](n+.1))+1:
        for i from 1 to len do
            if irem(temp, 10) mod 2 = 1 then temp := floor(temp/10) else flag := 0 fi:
        od:
        RETURN(flag):
    end:
    for n from 1 to 501 by 2 do
        if allodd(n) = 1 then printf(`%d, `, (n+reversal(n))/2) fi:
    od: # James Sellers, May 28 2002

Formula

{k + R(k)}/2 where k uses only odd digits 1, 3, 5, 7 and 9.
a(n) = (A014261(n) + A004086(A014261(n))) / 2. - Sean A. Irvine, Jul 06 2024

Extensions

More terms from James Sellers, May 28 2002

A071242 Arithmetic mean of n and R(n) where n is a number such that the least significant digit and the most significant digits are of same parity and R(n) is its digit reversal (A004086).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 11, 22, 33, 44, 55, 22, 33, 44, 55, 66, 22, 33, 44, 55, 66, 33, 44, 55, 66, 77, 33, 44, 55, 66, 77, 44, 55, 66, 77, 88, 44, 55, 66, 77, 88, 55, 66, 77, 88, 99, 101, 202, 303, 404, 505, 111, 212, 313, 414, 515, 121
Offset: 0

Views

Author

Amarnath Murthy, May 20 2002

Keywords

Crossrefs

Programs

  • Maple
    reversal := proc(n) local i, len, new, temp: new := 0: temp := n: len := floor(log[10](n+.1))+1: for i from 1 to len do new := new+irem(temp, 10)*10^(len-i): temp := floor(temp/10): od: RETURN(new): end: for n from 0 to 500 do if type((n+reversal(n))/2, integer) then printf(`%d,`,(n+reversal(n))/2) fi: od: # James Sellers, May 28 2002

Formula

{n + R(n)}/2 for all n which yield integers.

Extensions

More terms from James Sellers, May 28 2002

A071265 Numbers which can be written in exactly two different ways as k + R(k) where R(k) is k reversed (A004086).

Original entry on oeis.org

22, 33, 165, 176, 202, 222, 242, 262, 282, 302, 303, 322, 323, 342, 343, 362, 363, 382, 383, 403, 423, 443, 463, 483, 1515, 1535, 1555, 1575, 1595, 1615, 1616, 1635, 1636, 1655, 1656, 1675, 1676, 1695, 1696, 1716, 1736, 1756, 1776, 1796, 2002, 2871, 3003
Offset: 1

Views

Author

Amarnath Murthy, Jun 01 2002

Keywords

Comments

The sums are unordered, so for example 12 + 21 is not counted as distinct from 21 + 12. - Sean A. Irvine, Jul 06 2024

Examples

			22 = 11 + 11 = 20 + 02, 202 =101 + 101 = 200 + 002.
		

Crossrefs

Extensions

More terms from Vladeta Jovovic and Klaus Brockhaus, Jun 03 2002
Offset corrected by Sean A. Irvine, Jul 06 2024

A071266 Smallest numbers which can be written in exactly n different ways as k + R(k) where R(k) is k reversed (A004086).

Original entry on oeis.org

1, 0, 22, 44, 66, 88, 1111, 1661, 1771, 1881, 1991, 2662, 2772, 4444, 2882, 2992, 3773
Offset: 0

Views

Author

Amarnath Murthy, Jun 01 2002

Keywords

Comments

a(17), if it exists, exceeds 10^10. - Sean A. Irvine, Jul 06 2024

Examples

			a(0) = 1, since 1 cannot be written as k + R(k); a(1) = 0, since 0 = k + R(k) for k = 0.
a(4) = 66 and the four partitions are (60,06),(51,15),(42,24),(33,33).
		

Extensions

More terms from Klaus Brockhaus, Jun 05 2002

A071687 Non-palindromic numbers such that either x=q1.Rev[x] or Rev[x]=q2.x, where R[x]=A004086[x] and q1 or q2 are integers not divisible by 10.

Original entry on oeis.org

510, 540, 810, 1089, 2100, 2178, 4200, 5200, 5610, 5700, 5940, 6300, 8400, 8712, 8910, 9801, 10989, 21978, 23100, 27000, 46200, 51510, 52200, 52800, 54540, 56610, 57200, 59940, 65340, 69300, 81810, 87912, 89910, 98901, 109989, 212100, 217800
Offset: 1

Views

Author

Labos Elemer, Jun 03 2002

Keywords

Examples

			Includes special cases of A071685. Examples represented by {n, Rev[n], integer-quotient} triples: {1089, 9801, 9}, {87912, 21979, 4}, {5610, 165, 34}, {610000, 16, 38125}, etc.
		

Crossrefs

Programs

  • Mathematica
    nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] ed[x_] := IntegerDigits[x] red[x_] := Reverse[ed[x]] Do[s=Mod[ma=Max[{n, tn[red[n]]}], mi=Min[{n, r=tn[red[n]]}]]; If[Equal[s, 0]&&!Equal[n, r] &&!Equal[Mod[ma/mi, 10], 0], Print[{n, r, Max[r/n, n/r]}]], {n, 1, 1000000}]

Formula

q=Max[n/Rev[n], Rev[n]/n]=10m+r integer, where r>0, q>1.

A072032 a(n) = gcd(2^n, reverse(2^n)) = gcd(2^n, A004086(2^n)) = A055483(2^n).

Original entry on oeis.org

2, 4, 8, 1, 1, 2, 1, 4, 1, 1, 2, 8, 2, 1, 1, 4, 1, 2, 1, 1, 2, 2, 2, 1, 1, 16, 1, 2, 1, 1, 4, 4, 2, 1, 1, 2, 1, 8, 1, 1, 8, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 8, 4, 1, 1, 1, 1, 1, 8, 1, 1, 16, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 8, 1, 1, 1, 1, 1, 1, 8, 1, 2, 2, 1, 1, 1, 1, 1, 1, 16, 1, 8, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jun 07 2002

Keywords

Examples

			n=12: a(12) = gcd(4096,6904) = 8.
		

Crossrefs

Programs

  • Mathematica
    nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] red[x_] := Reverse[IntegerDigits[x]] Table[GCD[2^w, tn[red[2^w]]], {w, 1, 128}]

A074164 Smallest k such that R(k) > n*k, where R(k) is the digit reversal of k (A004086) (the reversal of 10 is taken to be 01 = 1, etc.).

Original entry on oeis.org

12, 13, 15, 17, 106, 107, 108, 109, 1099
Offset: 1

Views

Author

Amarnath Murthy, Aug 30 2002

Keywords

Comments

As R(k) doesn't increase the number of digits, R(k)<10k and so the sequence is complete. - Sascha Kurz, Jan 15 2003

Examples

			a(3) = 15, 51 > 3*15, a(3) is not 14 as 41 < 42 = 3*14. a(12) = 430 > 12*34.
a(4) = 17 as 71 > 17*4 but 61 is < 16*4.
		

Crossrefs

Cf. A074163.

Programs

  • Maple
    P := proc(Nlo, Nhi,Klo,Khi) local A::list,k,n,d,s; d := (X::posint)->convert(X,base,10):s := (L::list)->sum(L[i]*10^(nops(L)-i),i=1..nops(L)):k := Klo:A := [seq(0,i=1..Nhi-Nlo+1)]: for n from Nlo to Nhi do while k
    				

Extensions

Edited by Sascha Kurz, Jan 15 2003
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 21 2007

A074861 Iccanobirt sequence: a(n) = R(a(n-1)) + R(a(n-2)) + R(a(n-3)) where a(1)=a(2)=a(3)=1 and R(n) (A004086) is the reverse of n.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 85, 138, 960, 958, 1759, 10499, 109831, 247873, 617044, 958359, 1773317, 8528346, 14525888, 102424570, 170715000, 164793813, 394338733, 656748025, 1177078610, 1027388860, 1378392568, 9510483643, 12805616091
Offset: 1

Views

Author

Felice Russo, Sep 11 2002

Keywords

Crossrefs

Cf. A000213.

Programs

  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,FromDigits[Reverse[IntegerDigits[a]]] + FromDigits[ Reverse[IntegerDigits[b]]] + FromDigits[ Reverse[ IntegerDigits[c]]]}; Transpose[NestList[nxt,{1,1,1},30]][[1]] (* Harvey P. Dale, Nov 13 2012 *)

Extensions

More terms from David Garber, Oct 23 2002
Definition adapted to offset by Georg Fischer, Jun 18 2021

A077337 Numbers k such that k and R(k) both are squarefree where R(n) (A004086) is the digit reversal of n.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 22, 26, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 47, 51, 53, 55, 58, 59, 62, 66, 70, 71, 73, 74, 77, 78, 79, 83, 85, 87, 91, 93, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 122, 123, 127, 129
Offset: 1

Views

Author

Amarnath Murthy, Nov 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200],And@@SquareFreeQ/@{#,FromDigits[Reverse[ IntegerDigits[ #]]]}&] (* Harvey P. Dale, Jan 04 2014 *)
    Select[Range[200],AllTrue[{#,IntegerReverse[#]},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 16 2018 *)

Extensions

More terms from David Wasserman, Oct 25 2006
Previous Showing 41-50 of 587 results. Next