cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 87 results. Next

A244370 Total number of toothpicks after n-th stage in the toothpick structure of the symmetric representation of sigma in the four quadrants.

Original entry on oeis.org

8, 24, 48, 80, 112, 160, 200, 264, 328, 408, 464, 560, 624, 728, 832, 960, 1040, 1184, 1272, 1432, 1576, 1728, 1832, 2024, 2160, 2336, 2512, 2736
Offset: 1

Views

Author

Omar E. Pol, Jun 26 2014

Keywords

Comments

Partial sums of A244371.
If we use toothpicks of length 1/2, so the area of the central square is equal to 1. The total area of the structure after n-th stage is equal to A024916(n), the sum of all divisors of all positive integers <= n, hence the total area of the n-th set of symmetric regions added at n-th stage is equal to sigma(n) = A000203(n), the sum of divisors of n.
If we use toothpicks of length 1, so the number of cells (and the area) of the central square is equal to 4. The number of cells (and the total area) of the structure after n-th stage is equal to 4*A024916(n) = A243980(n), hence the number of cells (and the total area) of the n-th set of symmetric regions added at n-th stage is equal to 4*A000203(n) = A239050(n).

Examples

			Illustration of the structure after 16 stages (Contains 960 toothpicks):
.
.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _
.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_
.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_
.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |
.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _
.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |
.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |
.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |
.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |
.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |
.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |
.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |
.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |
.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |
.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |
.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |
.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |
.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|
.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |
.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|
.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|
.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
		

Crossrefs

Formula

a(n) = 4*A244362(n) = 8*A244360(n).

Extensions

a(8) corrected and more terms from Omar E. Pol, Oct 18 2014

A051778 Triangle read by rows, where row (n) = n mod (n-1), n mod (n-2), n mod (n-3), ...n mod 2.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 1, 2, 3, 1, 1, 1, 2, 3, 0, 2, 0, 1, 2, 3, 4, 1, 0, 1, 1, 2, 3, 4, 0, 2, 1, 0, 1, 2, 3, 4, 5, 1, 3, 2, 1, 1, 2, 3, 4, 5, 0, 2, 0, 0, 0, 1, 2, 3, 4, 5, 6, 1, 3, 1, 1, 1, 1, 2, 3, 4, 5, 6, 0, 2, 4, 2, 2, 0, 1, 2, 3, 4, 5, 6, 7, 1, 3, 0, 3, 0, 1, 1, 2, 3, 4, 5, 6, 7, 0, 2, 4, 1, 0, 1, 0
Offset: 3

Views

Author

Asher Auel, Dec 09 1999

Keywords

Comments

Central terms: a(2*n+1,n) = n for n > 0. - Reinhard Zumkeller, Dec 03 2014
Deleting column 1 of the array at A051126 gives the array A051778 in square format (see Example). - Clark Kimberling, Feb 04 2016

Examples

			row (7) = 7 mod 6, 7 mod 5, 7 mod 4, 7 mod 3, 7 mod 2 = 1, 2, 3, 1, 1.
1;
1  0 ;
1  2  1 ;
1  2  0  0 ;
1  2  3  1  1 ;
1  2  3  0  2  0 ;
1  2  3  4  1  0  1 ;
1  2  3  4  0  2  1  0 ;
1  2  3  4  5  1  3  2  1 ;
1  2  3  4  5  0  2  0  0  0 ;
1  2  3  4  5  6  1  3  1  1  1 ;
Northwest corner of square array:
1 1 1 1 1 1 1 1 1 1 1
0 2 2 2 2 2 2 2 2 2 2
1 0 3 3 3 3 3 3 3 3 3
0 1 0 4 4 4 4 4 4 4 4
1 2 1 0 5 5 5 5 5 5 5
0 0 2 1 0 6 6 6 6 6 6
1 1 3 2 1 0 7 7 7 7 7
- _Clark Kimberling_, Feb 04 2016
		

Crossrefs

Cf. A004125 (row sums), A000027 (central terms), A049820 (number of nonzeros per row), A032741 (number of ones per row), A070824 (number of zeros per row).

Programs

  • Haskell
    a051778 n k = a051778_tabl !! (n-3) !! (k-1)
    a051778_row n = a051778_tabl !! (n-3)
    a051778_tabl = map (\xs -> map (mod (head xs + 1)) xs) $
                       iterate (\xs -> (head xs + 1) : xs) [2]
    -- Reinhard Zumkeller, Dec 03 2014
  • Mathematica
    Flatten[Table[Mod[n,i],{n,3,20},{i,n-1,2,-1}]] (* Harvey P. Dale, Sep 09 2012 *)
    TableForm[Table[Mod[n, k], {n, 1, 12}, {k, 2, 12}]] (* square *)
    (* Clark Kimberling, Feb 04 2016 *)

A067439 a(n) = sum of all the remainders when n is divided by positive integers less than and coprime to n.

Original entry on oeis.org

0, 0, 1, 1, 4, 1, 8, 6, 9, 5, 22, 8, 28, 15, 19, 20, 51, 20, 64, 30, 39, 33, 98, 33, 83, 56, 89, 55, 151, 46, 167, 95, 107, 95, 150, 71, 233, 120, 172, 106, 297, 92, 325, 163, 186, 162, 403, 144, 358, 189, 279, 217, 505, 173, 375, 230, 342, 276, 635, 165, 645, 338
Offset: 1

Views

Author

Amarnath Murthy, Jan 29 2002

Keywords

Examples

			a(8) = 6. The remainders when 8 is divided by the coprime numbers 1, 3, 5 and 7 are 0, 2, 3 and 1, whose sum = 6.
		

Crossrefs

Programs

  • Maple
    a := n -> add(ifelse(igcd(n, i) = 1, irem(n, i), 0), i = 1..n-1):
    seq(a(n), n = 1..62);  # Peter Luschny, May 14 2025
  • Mathematica
    a[n_] := Sum[If[GCD[i, n]>1, 0, Mod[n, i]], {i, 1, n-1}]
    Table[Total[Mod[n,#]&/@Select[Range[n-1],CoprimeQ[#,n]&]],{n,70}] (* Harvey P. Dale, May 22 2012 *)
  • PARI
    a(n)=sum(i=1,n-1,if(gcd(n,i)==1,n%i)) \\ Charles R Greathouse IV, Jul 17 2012

Formula

From Ridouane Oudra, May 14 2025: (Start)
a(n) = A004125(n) - A072514(n).
a(n) = Sum_{d|n} d*mu(d)*A004125(n/d).
a(n) = Sum_{d|n} mu(d)*f(n,d), where f(n,d) = Sum_{i=1..n/d} (n mod d*i).
a(p) = A004125(p), for p prime.
a(p^k) = A004125(p^k) - p*A004125(p^(k-1)), for p prime and k >= 0.
a(p^k) = A072514(p^(k+1))/p - A072514(p^k), for p prime and k >= 0. (End)

Extensions

Edited by Dean Hickerson, Feb 15 2002

A072481 a(n) = Sum_{k=1..n} Sum_{d=1..k} (k mod d).

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 9, 17, 25, 37, 50, 72, 89, 117, 148, 184, 220, 271, 318, 382, 443, 513, 590, 688, 773, 876, 988, 1113, 1237, 1388, 1526, 1693, 1860, 2044, 2241, 2459, 2657, 2890, 3138, 3407, 3665, 3962, 4246, 4571, 4899, 5238, 5596, 5999, 6373, 6787, 7207
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 02 2002

Keywords

Comments

Previous name was: Sums of sums of remainders when dividing n by k, 0
Partial sums of A004125.

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(0) to a(N)
    S:= series(add(k*x^(2*k)/(1-x^k),k=1..floor(N/2))/(1-x)^2, x, N+1):
    seq((n^3-n)/6 - coeff(S,x,n), n=0..N); # Robert Israel, Aug 13 2015
  • Mathematica
    a[n_] := n(n+1)(2n+1)/6 - Sum[DivisorSigma[1, k] (n-k+1), {k, 1, n}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 08 2019, after Omar E. Pol *)
  • PARI
    a(n) = sum(k=1, n, sum(d=1, k, k % d)); \\ Michel Marcus, Feb 11 2014
  • Python
    for n in range(99):
        s = 0
        for k in range(1,n+1):
          for d in range(1,k+1):
            s += k % d
        print(str(s), end=',')
    
  • Python
    from math import isqrt
    def A072481(n): return (n*(n+1)*((n<<1)+1)-((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1)-sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 22 2023
    

Formula

a(n) = Sum_{k=1..n} Sum_{d=1..k}(k mod d).
a(n) = A000330(n) - A175254(n), n >= 1. - Omar E. Pol, Aug 12 2015
G.f.: x^2/(1-x)^4 - (1-x)^(-2) * Sum_{k>=1} k*x^(2*k)/(1-x^k). - Robert Israel, Aug 13 2015
a(n) ~ (1 - Pi^2/12)*n^3/3. - Vaclav Kotesovec, Sep 25 2016

Extensions

New name and a(0) from Alex Ratushnyak, Feb 10 2014

A222423 Sum of (n AND k) for k = 0, 1, 2, ..., n, where AND is the bitwise AND operator.

Original entry on oeis.org

0, 1, 2, 6, 4, 11, 18, 28, 8, 21, 34, 50, 60, 79, 98, 120, 16, 41, 66, 94, 116, 147, 178, 212, 216, 253, 290, 330, 364, 407, 450, 496, 32, 81, 130, 182, 228, 283, 338, 396, 424, 485, 546, 610, 668, 735, 802, 872, 816, 889, 962, 1038, 1108, 1187, 1266, 1348, 1400
Offset: 0

Author

Alex Ratushnyak, Feb 23 2013

Keywords

Comments

If n = 2^x, (n AND k) = 0 for k < n, therefore a(n) = n if and only if n = 0 or n = 2^x.
Row sums of A080099. - R. J. Mathar, Apr 26 2013
The associated incomplete sum_{0<=kA213673(n). - R. J. Mathar, Aug 22 2013

Examples

			a(3) = 6 because 1 AND 3 = 1; 2 AND 3 = 2; 3 AND 3 = 3; and 1 + 2 + 3 = 6.
a(4) = 4 because 1 AND 4 = 0; 2 AND 4 = 0; 3 AND 4 = 0; 4 AND 4 = 4; and 0 + 0 + 0 + 4 = 4.
a(5) = 11 because 1 AND 5 = 1; 2 AND 5 = 0; 3 AND 5 = 1; 4 AND 5 = 4; 5 AND 5 = 5; and 1 + 0 + 1 + 4 + 5 = 11.
		

Crossrefs

Cf. A004125.

Programs

  • Mathematica
    Table[Sum[BitAnd[n, k], {k, 0, n}], {n, 0, 63}] (* Alonso del Arte, Feb 24 2013 *)
  • PARI
    a(n) = sum(k=0, n, bitand(n, k)); \\ Michel Marcus, May 17 2015
  • Python
    for n in range(99):
        s = 0
        for k in range(n+1):
            s += n & k
        print(s, end=",")
    

Formula

a(2^n-1) = A006516(n) for all n, since k AND 2^n-1 = k for all k<2^n. - M. F. Hasler, Feb 28 2013

A224915 a(n) = Sum_{k=0..n} n XOR k where XOR is the bitwise logical exclusive-or operator.

Original entry on oeis.org

0, 1, 5, 6, 22, 23, 27, 28, 92, 93, 97, 98, 114, 115, 119, 120, 376, 377, 381, 382, 398, 399, 403, 404, 468, 469, 473, 474, 490, 491, 495, 496, 1520, 1521, 1525, 1526, 1542, 1543, 1547, 1548, 1612, 1613, 1617, 1618, 1634, 1635, 1639, 1640, 1896, 1897, 1901, 1902, 1918
Offset: 0

Author

Alex Ratushnyak, Apr 19 2013

Keywords

Examples

			a(2) = (0 xor 2) + (1 xor 2) = 2 + 3 = 5.
		

Crossrefs

Cf. A001196 (bit doubling).
Row sums of A051933.
Other sums: A222423 (AND), A350093 (OR), A265736 (IMPL), A350094 (CNIMPL), A004125 (mod).

Programs

  • Maple
    read("transforms"):
    A051933 := proc(n,k)
        XORnos(n,k) ;
    end proc:
    A224915 := proc(n)
        add(A051933(n,k),k=0..n) ;
    end proc: # R. J. Mathar, Apr 26 2013
    # second Maple program:
    with(MmaTranslator[Mma]):
    seq(add(BitXor(n,i),i=0..n),n=0..60); # Ridouane Oudra, Dec 09 2020
  • Mathematica
    Array[Sum[BitXor[#, k], {k, 0, #}] &, 53, 0] (* Michael De Vlieger, Dec 09 2020 *)
  • PARI
    a(n) = sum(k=0, n, bitxor(n, k)); \\ Michel Marcus, Jun 08 2019
    
  • PARI
    a(n) = (3*fromdigits(binary(n),4) - n) >>1; \\ Kevin Ryde, Dec 17 2021
  • Python
    for n in range(59):
        s = 0
        for k in range(n):  s += n ^ k
        print(s, end=',')
    
  • Python
    def A224915(n): return 3*int(bin(n)[2:],4)-n>>1 # Chai Wah Wu, Aug 21 2023
    

Formula

a(n) = Sum_{j=1..n} 4^(v_2(j)), where v_2(j) is the exponent of highest power of 2 dividing j. - Ridouane Oudra, Jun 08 2019
a(n) = n + 3*Sum_{j=1..floor(log_2(n))} 4^(j-1)*floor(n/2^j), for n>=1. - Ridouane Oudra, Dec 09 2020
From Kevin Ryde, Dec 17 2021: (Start)
a(2*n+b) = 4*a(n) + n + b where b = 0 or 1.
a(n) = (A001196(n) - n)/2.
a(n) = A350093(n) - A222423(n), being XOR = OR - AND.
(End)

A049798 a(n) = (1/2)*Sum_{k = 1..n} T(n,k), array T as in A049800.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 2, 2, 3, 7, 2, 7, 10, 8, 8, 15, 11, 19, 16, 15, 22, 32, 19, 25, 34, 34, 33, 46, 33, 47, 47, 48, 61, 65, 45, 62, 77, 79, 68, 87, 74, 94, 97, 86, 105, 127, 98, 114, 120, 124, 129, 154, 141, 151, 142, 147, 172, 200, 151, 180
Offset: 1

Keywords

Comments

a(n) is the sum of the remainders after dividing each larger part by its corresponding smaller part for each partition of n+1 into two parts. - Wesley Ivan Hurt, Dec 20 2020

Examples

			From _Lei Zhou_, Mar 10 2014: (Start)
For n = 3, n+1 = 4, floor((n+1)/2) = 2, mod(4,2) = 0, and so a(3) = 0.
For n = 4, n+1 = 5, floor((n+1)/2) = 2, mod(5,2) = 1, and so a(4) = 1.
...
For n = 12, n+1 = 13, floor((n+1)/2) = 6, mod(13,2) = 1, mod(13,3) = 1, mod(13,4) = 1, mod(13,5) = 3, mod(13,6) = 1, and so a(12) = 1 + 1 + 1 + 3 + 1 = 7. (End)
		

Crossrefs

Half row sums of A049800.

Programs

  • GAP
    List([1..60], n-> Sum([1..n], k-> (n+1) mod Int((k+1)/2))/2 ); # G. C. Greubel, Dec 09 2019
    
  • Magma
    [ (&+[(n+1) mod Floor((k+1)/2): k in [1..n]])/2: n in [1..60]]; // G. C. Greubel, Dec 09 2019
    
  • Maple
    seq( add( (n+1) mod floor((k+1)/2), k=1..n)/2, n=1..60); # G. C. Greubel, Dec 09 2019
  • Mathematica
    Table[Sum[Mod[n+1, Floor[(k+1)/2]], {k,n}]/2, {n, 60}] (* G. C. Greubel, Dec 09 2019 *)
  • PARI
    vector(60, n, sum(k=1,n, lift(Mod(n+1, (k+1)\2)) )/2 ) \\ G. C. Greubel, Dec 09 2019
    
  • Python
    def A049798(n): return sum((n+1)%k for k in range(2,(n+1>>1)+1)) # Chai Wah Wu, Oct 20 2023
  • Sage
    def a(n):
        return sum([(n+1)%k for k in range(2,floor((n+3)/2))])
    # Ralf Stephan, Mar 14 2014
    

Formula

a(n) = Sum_{k=2..floor((n+1)/2)} ((n+1) mod k). - Lei Zhou, Mar 10 2014
a(n) = A004125(n+1) - A008805(n-2), for n >= 2. - Carl Najafi, Jan 31 2013
a(n) = Sum_{i = 1..ceiling(n/2)} ((n-i+1) mod i). - Wesley Ivan Hurt, Jan 05 2017

A051777 Triangle read by rows, where row (n) = n mod n, n mod (n-1), n mod (n-2), ...n mod 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 1, 2, 3, 0, 2, 0, 0, 0, 1, 2, 3, 4, 1, 0, 1, 0, 0, 1, 2, 3, 4, 0, 2, 1, 0, 0, 0, 1, 2, 3, 4, 5, 1, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 0, 2, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 1, 3, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 6, 0, 2, 4, 2, 2, 0, 0
Offset: 1

Author

Asher Auel, Dec 09 1999

Keywords

Comments

Also, rectangular array read by antidiagonals, a(n, k) = k mod n (k >= 0, n >= 1). Cf. A048158, A051127. - David Wasserman, Oct 01 2008
Central terms: a(2*n - 1, n) = n - 1. - Reinhard Zumkeller, Jan 25 2011

Examples

			row (5) = 5 mod 5, 5 mod 4, 5 mod 3, 5 mod 2, 5 mod 1 = 0, 1, 2, 1, 0.
0 ;
0  0 ;
0  1  0 ;
0  1  0  0 ;
0  1  2  1  0;
0  1  2  0  0  0 ;
0  1  2  3  1  1  0 ;
0  1  2  3  0  2  0  0;
0  1  2  3  4  1  0  1  0 ;
0  1  2  3  4  0  2  1  0  0 ;
0  1  2  3  4  5  1  3  2  1  0 ;
0  1  2  3  4  5  0  2  0  0  0  0 ;
0  1  2  3  4  5  6  1  3  1  1  1  0 ;
		

Crossrefs

Cf. A051778. Row sums give A004125. Number of 0's in row n gives A000005 (tau(n)). Number of 1's in row n+1 gives A032741(n).

Programs

  • Haskell
    a051777 n k = a051777_row n !! (k-1)
    a051777_row n = map (mod n) [n, n-1 .. 1]
    a051777_tabl = map a051777_row [1..]
    -- Reinhard Zumkeller, Jan 25 2011
  • Mathematica
    Flatten[Table[Mod[n,Range[n,1,-1]],{n,20}]] (* Harvey P. Dale, Nov 30 2011 *)

A244048 Antisigma(n) minus the sum of remainders of n mod k, for k = 1,2,3,...,n.

Original entry on oeis.org

0, 0, 1, 2, 5, 6, 12, 13, 20, 24, 32, 33, 49, 50, 60, 69, 84, 85, 106, 107, 129, 140, 154, 155, 191, 197, 213, 226, 254, 255, 297, 298, 329, 344, 364, 377, 432, 433, 455, 472, 522, 523, 577, 578, 618, 651, 677, 678, 754, 762, 805, 826
Offset: 1

Author

Omar E. Pol, Jun 23 2014

Keywords

Comments

For n > 1 a(n) is the sum of all aliquot parts of all positive integers < n. - Omar E. Pol, Mar 27 2021

Examples

			From _Omar E. Pol_, Mar 27 2021: (Start)
The following diagrams show a square dissection into regions that are the symmetric representation of A000203, A004125, A153485 and this sequence.
In order to construct every diagram we use the following rules:
At stage 1 in the first quadrant of the square grid we draw the symmetric representation of sigma(n) using the two Dyck paths described in the rows n and n-1 of A237593.
At stage 2 we draw a pair of orthogonal line segments (if it's necessary) such that in the drawing appears totally formed a square n X n. The area of the region that is above the symmetric representation of sigma(n) equals A004125(n).
At stage 3 we draw a zig-zag path with line segments of length 1 from (0,n-1) to (n-1,0) such that appears a staircase with n-1 steps. The area of the region (or regions) that is below the symmetric representation of sigma(n) and above the staircase equals a(n).
At stage 4 we draw a copy of the symmetric representation of A004125(n) rotated 180 degrees such that one of its vertices is the point (0,0). The area of the region (or regions) that is above of this region and below the staircase equals A153485(n).
Illustration for n = 1..6:
.                                                                    _ _ _ _ _ _
.                                                     _ _ _ _ _     |_ _ _  |_ R|
.                                        _ _ _ _ R   |_ _S_|  R|    | |_T | S |_|
.                             _ _ _ R   |_ _  |_|    | |_  |_ _|    |   |_|_ _  |
.                    _ _     |_S_|_|    | |_|_S |    |_U_|_T | |    |_  U |_T | |
.             _ S   |_ S|   U|_|_|S|    |_ U|_| |    |   | |_|S|    | |_    |_| |
.            |_|    |_|_|    |_|_|_|    |_|_ _|_|    |_V_|_U_|_|    |_V_|_ _ _|_|
.                  U        V   U       V
.
n:            1       2         3           4             5               6
R: A004125    0       0         1           1             4               3
S: A000203    1       3         4           7             6              12
T: a(n)       0       0         1           2             5               6
U: A153485    0       1         2           5             6              12
V: A004125    0       0         1           1             4               3
.
Illustration for n = 7..9:
.                                                      _ _ _ _ _ _ _ _ _
.                                _ _ _ _ _ _ _ _      |_ _ _S_ _|       |
.            _ _ _ _ _ _ _      |_ _ _ _  |     |     | |_      |_ _ R  |
.           |_ _S_ _|     |     | |_    | |_ R  |     |   |_    |_ S|   |
.           | |_    |_ R  |     |   |_  |_S |_ _|     |     |_  T |_|_ _|
.           |   |_  T |_ _|     |     |_T |_ _  |     |_ _    |_      | |
.           |_ _  |_    | |     |_ _  U |_    | |     |   |  U  |_    | |
.           |   |_U |_  |S|     |   |_    |_  | |     |   |_ _    |_  |S|
.           |  V  |   |_| |     |  V  |     |_| |     |  V    |     |_| |
.           |_ _ _|_ _ _|_|     |_ _ _|_ _ _ _|_|     |_ _ _ _|_ _ _ _|_|
.
n:                 7                    8                      9
R: A004125         8                    8                     12
S: A000203         8                   15                     12
T: a(n)           12                   13                     20
U: A153485        13                   20                     24
V: A004125         8                    8                     12
.
Illustration for n = 10..12:
.                                                         _ _ _ _ _ _ _ _ _ _ _ _
.                              _ _ _ _ _ _ _ _ _ _ _     |_ _ _ _ _ _  |         |
.     _ _ _ _ _ _ _ _ _ _     |_ _ _S_ _ _|         |    | |_        | |_ _   R  |
.    |_ _ _S_ _  |       |    | |_        |      R  |    |   |_      |     |_    |
.    | |_      | |_  R   |    |   |_      |_        |    |     |_    |_  S   |   |
.    |   |_    |_ _|_    |    |     |_      |_      |    |       |_    |_    |_ _|
.    |     |_      | |_ _|    |       |_   T  |_ _ _|    |         |_ T  |_ _ _  |
.    |       |_ T  |_ _  |    |_ _ _    |_        | |    |_ _        |_        | |
.    |_ _      |_      | |    |     |_ U  |_      | |    |   |    U    |_      | |
.    |   |_ U    |_    |S|    |       |_    |_    |S|    |   |_          |_    | |
.    |     |_      |_  | |    |         |     |_  | |    |     |_ _        |_  | |
.    |  V    |       |_| |    |  V      |       |_| |    |  V      |         |_| |
.    |_ _ _ _|_ _ _ _ _|_|    |_ _ _ _ _|_ _ _ _ _|_|    |_ _ _ _ _|_ _ _ _ _ _|_|
.
n:            10                         11                          12
R: A004125    13                         22                          17
S: A000203    18                         12                          28
T: a(n)       24                         32                          33
U: A153485    32                         33                          49
V: A004125    13                         22                          17
.
Note that in the diagrams the symmetric representation of a(n) is the same as the symmetric representation of A153485(n-1) rotated 180 degrees.
The original examples (dated Jun 24 2014) were only the diagrams for n = 11 and n = 12. (End)
		

Programs

  • Mathematica
    With[{r=Range[100]},Join[{0},Accumulate[DivisorSigma[1,r]-r]]] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    from math import isqrt
    def A244048(n): return (-n*(n-1)-(s:=isqrt(n-1))**2*(s+1) + sum((q:=(n-1)//k)*((k<<1)+q+1) for k in range(1,s+1)))>>1 # Chai Wah Wu, Oct 22 2023

Formula

a(n) = A024816(n) - A004125(n).
a(n) = A000217(n) - A000203(n) - A004125(n).
a(n) = A024916(n) - A000203(n) - A000217(n-1).
a(n) = A000217(n) - A123327(n).
a(n) = A153485(n-1), n >= 2.

A294016 a(n) = sum of all divisors of all positive integers <= n, minus the sum of remainders of n mod k, for k = 1, 2, 3, ..., n.

Original entry on oeis.org

1, 4, 7, 14, 17, 30, 33, 48, 57, 74, 77, 110, 113, 134, 153, 184, 187, 230, 233, 278, 301, 330, 333, 406, 419, 452, 479, 536, 539, 624, 627, 690, 721, 762, 789, 900, 903, 948, 983, 1084, 1087, 1196, 1199, 1280, 1347, 1400, 1403, 1556, 1573, 1660, 1703, 1796, 1799, 1932, 1967, 2096, 2143, 2208, 2211, 2428, 2431, 2500
Offset: 1

Author

Omar E. Pol, Oct 22 2017

Keywords

Comments

a(n) is also the area (also the number of cells) of the n-th polygon formed by the Dyck path described in A237593 and its mirror, as shown below in the example.
a(n) is also the volume (and the number of cubes) in the n-th level (starting from the top) of the pyramid described in A294017.

Examples

			Illustration of initial terms:
.
.   _ 1
.  |_|_ _ 4
.    |   |
.    |_ _|_ _   7
.        |   |_
.        |_    |
.          |_ _|_ _ _  14
.              |     |_
.              |       |
.              |_      |
.                |_ _ _|_ _ _
.                      |     |  17
.                      |     |_ _
.                      |_ _      |
.                          |     |
.                          |_ _ _|_ _ _ _
.                                |       |_  30
.                                |         |_
.                                |           |
.                                |_          |
.                                  |_        |
.                                    |_ _ _ _|_ _ _ _
.                                            |       |
.                                            |       |_  33
.                                            |         |_ _
.                                            |_ _          |
.                                                |_        |
.                                                  |       |
.                                                  |_ _ _ _|
.
		

Crossrefs

Programs

  • Maple
    A294016 := proc(n)
        A024916(n)-A004125(n) ;
    end proc:
    seq(A294016(n),n=1..80) ; # R. J. Mathar, Nov 07 2017
  • Mathematica
    Accumulate[Table[2*(DivisorSigma[1, n] - n) + 1, {n, 1, 100}]] (* Amiram Eldar, Mar 30 2024 *)
  • Python
    from math import isqrt
    def A294016(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))-n**2 # Chai Wah Wu, Oct 22 2023

Formula

a(n) = A024916(n) - A004125(n).
a(n) = A000290(n) - A067436(n).
From Omar E. Pol, Nov 05 2017: (Start)
a(n) = A000203(n) + A024816(n) + A153485(n) - A004125(n).
a(n) = A000217(n) + A153485(n) - A004125(n).
a(n) = A000203(n) + A153485(n) + A244048(n). (End)
a(n) = (Pi^2/6 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, Mar 30 2024
Previous Showing 31-40 of 87 results. Next