cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 190 results. Next

A190167 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n having a total of k (1,0)-steps at levels 1,3,5,... .

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 4, 6, 4, 2, 1, 7, 12, 10, 5, 2, 1, 12, 24, 23, 14, 6, 2, 1, 21, 48, 52, 36, 18, 7, 2, 1, 38, 96, 115, 90, 51, 22, 8, 2, 1, 70, 193, 254, 217, 138, 68, 26, 9, 2, 1, 130, 388, 559, 522, 358, 196, 87, 30, 10, 2, 1, 243, 782, 1220, 1240, 926, 542, 264, 108, 34, 11, 2, 1
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

Row n has n-1 entries (n>=3).
Sum of entries in row n is A004148(n) (the RNA secondary structure numbers).
T(n,0)=A190168(n).
Sum(kT(n,k),k>=0)=A190169(n).
The trivariate g.f. H(t,s,z), where t (s) marks (1,0)-steps at even (odd) levels and z marks length, satisfies
z^2(1-tz+z^2)H^2-(1-tz+z^2)(1-sz+z^2)H+1-sz+z^2=0.

Examples

			T(5,2)=2 because we have huh'h'd and uh'h'dh, where u=(1,1), h=(1,0), d=(1,-1) (the odd-level h-steps are marked).
Triangle starts:
1;
1;
1;
1,1;
1,2,1;
2,3,2,1;
4,6,4,2,1;
7,12,10,5,2,1;
		

Crossrefs

Programs

  • Maple
    eq:=z^2*(1-z+z^2)*G^2-(1-z+z^2)*(1-s*z+z^2)*G+1-s*z+z^2 = 0: g:= RootOf(eq, G): Gser:= simplify(series(g, z = 0, 17)): for n from 0 to 13 do P[n] := sort(expand(coeff(Gser, z, n))) end do: 1; 1; for n from 0 to 13 do seq(coeff(P[n], s, k), k = 0 .. n-2) end do; # yields sequence in triangular form

Formula

G.f. = G = G(s,z) satisfies the equation z^2*(1-z+z^2)G^2-(1-z+z^2)(1-sz+z^2)G+1-sz+z^2=0.

A202849 Number of secondary structures of size n having no stacks of even length.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 14, 31, 66, 141, 313, 702, 1577, 3581, 8207, 18903, 43770, 101903, 238282, 559322, 1317717, 3114676, 7383914, 17552857, 41831618, 99923471, 239200459, 573750288, 1378763083, 3319005743, 8002573350, 19324601494, 46731582653, 113160019865
Offset: 0

Views

Author

Emeric Deutsch, Dec 26 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.

Examples

			a(5)=7; representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; only the last one has stacks of even length.
		

Crossrefs

Programs

  • Maple
    f := z^2/(1-z^4): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 37)): seq(coeff(Gser, z, n), n = 0 .. 33);

Formula

G.f.: G=G(z) satisfies G = 1+zG +fG(G-1)/(1+f), where f = z^2/(1-z^4).
a(n) = A202848(n,0).
D-finite with recurrence (n+2)*a(n) +(-2*n-1)*a(n-1) +(n-1)*a(n-2) +3*(-2*n+5)*a(n-3) +(-n+7)*a(n-6) +3*(2*n-17)*a(n-7) +(-n+10)*a(n-8) +(-2*n+23)*a(n-9) +(n-13)*a(n-10)=0. - R. J. Mathar, Jul 26 2022

A247290 Triangle read by rows: T(n,k) is the number of weighted lattice paths B(n) having k uhd strings.

Original entry on oeis.org

1, 1, 2, 4, 7, 1, 15, 2, 32, 5, 69, 13, 154, 30, 1, 346, 74, 3, 786, 183, 9, 1806, 449, 28, 4180, 1114, 78, 1, 9745, 2767, 219, 4, 22865, 6882, 611, 14, 53938, 17170, 1674, 50, 127865, 42906, 4569, 161, 1, 304447, 107392, 12398, 506, 5, 727733, 269237, 33450, 1564, 20
Offset: 0

Views

Author

Emeric Deutsch, Sep 16 2014

Keywords

Comments

B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
Row n contains 1 + floor(n/4) entries.
Sum of entries in row n is A004148(n+1) (the 2ndary structure numbers).
T(n,0) = A247291(n).
Sum(k*T(n,k), k=0..n) = A110320(n-3) (n>=3)

Examples

			T(5,1)=2 because we have huhd and uhdh.
Triangle starts:
1;
1;
2;
4;
7,1;
15,2;
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*G+z^3*(G-z+t*z)*G: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 22 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 22 do seq(coeff(P[n], t, k), k = 0 .. floor((1/4)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t) option remember; `if`(y<0 or y>n, 0, `if`(n=0, 1,
          expand(b(n-1, y, `if`(t=1, 2, 0))+`if`(n>1, b(n-2, y, 0)+
          b(n-2, y+1, 1), 0)+b(n-1, y-1, 0)*`if`(t=2, x, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Sep 16 2014
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n, 0, If[n == 0, 1, Expand[b[n-1, y, If[t == 1, 2, 0]] + If[n>1, b[n-2, y, 0] + b[n-2, y+1, 1], 0] + b[n-1, y-1, 0]*If[t == 2, x, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

G.f. G = G(t,z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z + t*z).

A247292 Triangle read by rows: T(n,k) is the number of weighted lattice paths B(n) having k uHd strings.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 1, 35, 2, 77, 5, 172, 13, 391, 32, 899, 78, 1, 2085, 195, 3, 4877, 487, 9, 11490, 1217, 28, 27236, 3055, 81, 64916, 7687, 228, 1, 155483, 19374, 641, 4, 374027, 48925, 1782, 14, 903286, 123760, 4908, 50, 2189219, 313512, 13451, 165, 5322965, 795263, 36690, 522, 1
Offset: 0

Views

Author

Emeric Deutsch, Sep 16 2014

Keywords

Comments

B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
Row n contains 1 + floor(n/5) entries.
Sum of entries in row n is A004148(n+1) (the 2ndary structure numbers).
T(n,0) = A247293(n).
Sum(k*T(n,k), k=0..n) = A110320(n-4) (n>=4).

Examples

			T(6,1)=2 because we have uHdh and huHd.
Triangle starts:
1;
1;
2;
4;
8;
16,1;
35,2;
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*G+z^3*(G-z^2+t*z^2)*G: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 22 do P[n] := sort(coeff(Gser, z, n)) end do; for n from 0 to 22 do seq(coeff(P[n], t, k), k = 0 .. floor((1/5)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t) option remember; `if`(y<0 or y>n, 0, `if`(n=0, 1,
          expand(b(n-1, y, 0)+`if`(n>1, b(n-2, y, `if`(t=1, 2, 0))+
          b(n-2, y+1, 1), 0)+b(n-1, y-1, 0)*`if`(t=2, x, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Sep 16 2014
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n, 0, If[n == 0, 1, Expand[b[n-1, y, 0] + If[n>1, b[n-2, y, If[t == 1, 2, 0]] + b[n-2, y+1, 1], 0] + b[n-1, y-1, 0]*If[t == 2, x, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

G.f. G = G(t,z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z^2 + t*z^2).

A247293 Number of weighted lattice paths B(n) having no uHd strings.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 35, 77, 172, 391, 899, 2085, 4877, 11490, 27236, 64916, 155483, 374027, 903286, 2189219, 5322965, 12980660, 31740404, 77804885, 191160040, 470662449, 1161123461, 2869754099, 7104856781, 17618234456, 43754467510, 108816781175
Offset: 0

Views

Author

Emeric Deutsch, Sep 16 2014

Keywords

Comments

B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
a(n) = A247292(n,0).

Examples

			a(6)=35 because among the 37 (=A004148(7)) members of B(6) only huHd and uHdh contain uHd.
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*G+z^3*(G-z^2)*G: G := RootOf(eq, G): Gser := series(G, z = 0, 37): seq(coeff(Gser, z, n), n = 0 .. 35);
    # second Maple program:
    b:= proc(n, y, t) option remember; `if`(y<0 or y>n or t=3, 0,
          `if`(n=0, 1, b(n-1, y, 0)+`if`(n>1, b(n-2, y, `if`(t=1,
          2, 0))+b(n-2, y+1, 1), 0)+b(n-1, y-1, `if`(t=2, 3, 0))))
        end:
    a:= n-> b(n, 0$2):
    seq(T(n), n=0..40);  # Alois P. Heinz, Sep 16 2014
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n || t == 3, 0, If[n == 0, 1, b[n-1, y, 0] + If[n>1, b[n-2, y, If[t == 1, 2, 0]] + b[n-2, y+1, 1], 0] + b[n-1, y-1, If[t == 2, 3, 0]]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

G.f. G = G(z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z^2).
D-finite with recurrence +(n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +(n-3)*a(n-4) +(2*n-9)*a(n-5) +2*(-n+6)*a(n-6) +(-2*n+15)*a(n-7) +(n-12)*a(n-10)=0. - R. J. Mathar, Jul 26 2022

A247295 Number of weighted lattice paths B(n) having no uhd and no uHd strings.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 30, 64, 141, 316, 713, 1626, 3740, 8659, 20176, 47274, 111302, 263201, 624860, 1488736, 3558412, 8530533, 20505468, 49413242, 119347708, 288873639, 700582008, 1702190653, 4142880297, 10099352082, 24656876772, 60283224645, 147581756005
Offset: 0

Views

Author

Emeric Deutsch, Sep 16 2014

Keywords

Comments

B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
a(n) = A247294(n,0).

Examples

			a(6)=30 because among the 37 (=A004148(7)) members of B(6) only uhdhh, huhdh, hhuhd, Huhd, uhdH, uHdh, and huHd contain uhd or uHd (or both).
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*G+z^3*(G-z-z^2)*G: G := RootOf(eq, G): Gser := series(G, z = 0, 37): seq(coeff(Gser, z, n), n = 0 .. 35);
    # second Maple program:
    b:= proc(n, y, t) option remember; `if`(y<0 or y>n or t=3, 0,
          `if`(n=0, 1, b(n-1, y-1, `if`(t=2, 3, 0))+b(n-1, y,
          `if`(t=1, 2, 0))+`if`(n>1, b(n-2, y, `if`(t=1, 2, 0))+
           b(n-2, y+1, 1), 0)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 16 2014
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n || t == 3, 0, If[n == 0, 1, b[n-1, y-1, If[t == 2, 3, 0]] + b[n-1, y, If[t == 1, 2, 0]] + If[n>1, b[n-2, y, If[t == 1, 2, 0]] + b[n-2, y+1, 1], 0]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

G.f. G = G(z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z- z^2 ).
D-finite with recurrence (n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +3*(n-3)*a(n-4) +4*(-n+6)*a(n-6) +(-2*n+15)*a(n-7) +(n-9)*a(n-8) +(2*n-21)*a(n-9) +(n-12)*a(n-10)=0. - R. J. Mathar, Jul 26 2022

A097777 Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n containing k U H^j Us for some j>0, where U=(1,1) and H=(1,0) (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 1, 32, 5, 65, 17, 134, 50, 1, 280, 136, 7, 592, 355, 31, 1264, 904, 114, 1, 2722, 2264, 378, 9, 5906, 5604, 1176, 49, 12900, 13752, 3504, 215, 1, 28344, 33530, 10112, 835, 11, 62608, 81358, 28468, 2997, 71, 138949, 196688, 78576, 10173, 361, 1
Offset: 0

Views

Author

Emeric Deutsch, Sep 11 2004

Keywords

Comments

Row n contains floor(n/3) entries (n>=3).
Row sums are the RNA secondary structure numbers (A004148).
T(n,0)=A098051(n).
Sum(k*T(n,k), k>=0)=A187257(n).

Examples

			Triangle starts:
  1;
  1;
  1;
  2;
  4;
  8;
  16,1;
  32,5;
  65,17;
  134,50,1;
  280,136,7;
  ...
Row n has floor(n/3) terms, n>=3.
T(7,1)=5 because we have H(UHU)HDD, (UHU)HHDD, (UHU)HDHD, (UHU)HDDH and (UHHU)HDD, where U=(1,1), H=(1,0) and D=(1,-1); the U H^j U's are shown between parentheses.
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*G*(G-1+(t-1)*(z*G-z/(1-z))): g := RootOf(eq, G): gser := simplify(series(g, z = 0, 23)): for n from 0 to 18 do P[n] := sort(coeff(gser, z, n)) end do: 1; 1; 1; for n from 3 to 18 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)-1) end do; # yields sequence in triangular form

Formula

G.f. = G = G(t, z) satisfies G=1+zG+z^2*G[G-1-(1-t)[zG-z/(1-z)]].
The generating function H=H(t,z) relative to the number of subwords of the form UH^bU for a fixed b>=1 satisfies H = 1+zH+z^2*H[H-1+(t-1)z^b*(H-1-zH)].

A097885 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n with k valleys (n>=0, 0<=k<=floor(n/2)-1; a valley is a downstep followed by an upstep).

Original entry on oeis.org

1, 1, 2, 4, 8, 1, 17, 4, 37, 13, 1, 82, 40, 5, 185, 116, 21, 1, 423, 326, 80, 6, 978, 899, 279, 31, 1, 2283, 2444, 924, 140, 7, 5373, 6578, 2948, 568, 43, 1, 12735, 17576, 9136, 2156, 224, 8, 30372, 46702, 27690, 7777, 1035, 57, 1, 72832, 123568, 82453, 26952, 4422
Offset: 0

Views

Author

Emeric Deutsch, Sep 02 2004

Keywords

Comments

Also, triangle read by rows: T(n,k) is the number of Motzkin paths of length n and having k double rises (i.e. UU's, where U=(1,1)). E.g. T(5,1)=4 counts HUUDD, UUDDH, UUHDD and UUDHD, where U=(1,1), H=(1,0) and D=(1,-1).
Row sums are the Motzkin numbers (A001006). Column 0 gives A004148.

Examples

			Triangle starts:
   1;
   1;
   2;
   4;
   8,  1;
  17,  4;
  37, 13, 1;
  ...
Row n (n>=2) has floor(n/2) terms.
T(5,1)=4 counts HU(DU)D, U(DU)DH, U(DU)HD and UH(DU)D (here U=(1,1), H=(1,0) and D=(1,-1); valleys are shown between parentheses).
		

Crossrefs

Programs

  • Maple
    eq:=G=1+z*G+z^2*G*(t*(G-1-z*G)+1+z*G): sol:=solve(eq,G): Gser:=simplify(series(sol[1],z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: 1,1,seq(seq(coeff(t*P[n],t^k),k=1..floor(n/2)),n=0..12);
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
          `if`(x=0, 1, b(x-1, y, 1)+b(x-1, y-1, z)+
                expand(b(x-1, y+1, 1)*t)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Oct 23 2019
  • Mathematica
    (CoefficientList[#, t]& ) /@ CoefficientList[(-(t z^2) + Sqrt[((t-1) z^2 - z + 1)^2 + 4 z^2 (z t - z - t)] + z^2 + z - 1)/(2 z^2 (z t - z - t)) + O[z]^16, z] // Flatten (* Jean-François Alcover, Oct 23 2019 *)

Formula

G.f. G=G(t, z) satisfies z^2*(t+z-tz)G^2-(1-z-z^2+tz^2)*G+1=0.

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 16 2007

A098083 Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n containing k DHH...HU's, where U=(1,1), D=(1,-1) and H=(1,0) (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 36, 1, 77, 5, 167, 18, 365, 58, 805, 172, 1, 1790, 486, 7, 4008, 1331, 34, 9033, 3561, 141, 20477, 9370, 524, 1, 46663, 24350, 1810, 9, 106843, 62674, 5930, 55, 245691, 160126, 18652, 279, 567194, 406732, 56832, 1245, 1, 1314086, 1028360
Offset: 0

Views

Author

Emeric Deutsch, Sep 13 2004

Keywords

Comments

Row n >= 3 has ceiling((n-2)/4) terms.
Row sums yield the RNA secondary structure numbers (A004148).
T(n,0) = A190162(n).
Sum_{k>=0} k*T(n,k) = A190163(n).

Examples

			Triangle starts:
    1;
    1;
    1;
    2;
    4;
    8;
   17;
   36,  1;
   77,  5;
  167, 18
T(8,1)=5 because we have UH(DHU)HHD, HUH(DHU)HD, UH(DHHU)HD, UH(DHU)HDH and UHH(DHU)HD (the required subwords are shown between parentheses).
		

Crossrefs

Cf. A004148.

Programs

  • Maple
    eq := G = 1+z*G+z^2*(G-1)*(G-(1-t)*z*(G-1-z*G)/(1-z)): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 23)): for n from 0 to 20 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form

Formula

G.f. = G = G(t, z) satisfies G = 1 + z*G + z^2*(G-1)*(G - (1-t)*z*(G-z*G-1)/(1-z)).

A110319 Triangle read by rows: T(n,k) (1 <= k <= n) is number of RNA secondary structures of size n (i.e., with n nodes) having k blocks (an RNA secondary structure can be viewed as a restricted noncrossing partition).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 1, 6, 1, 0, 0, 0, 6, 10, 1, 0, 0, 0, 1, 20, 15, 1, 0, 0, 0, 0, 10, 50, 21, 1, 0, 0, 0, 0, 1, 50, 105, 28, 1, 0, 0, 0, 0, 0, 15, 175, 196, 36, 1, 0, 0, 0, 0, 0, 1, 105, 490, 336, 45, 1, 0, 0, 0, 0, 0, 0, 21, 490, 1176, 540, 55, 1, 0, 0, 0, 0, 0, 0, 1, 196
Offset: 1

Views

Author

Emeric Deutsch, Jul 19 2005

Keywords

Comments

Row sums yield the RNA secondary structure numbers (A004148).
Column sums yield the Catalan numbers (A000108).
A rearrangement of the Narayana numbers triangle (A001263).

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 0, 3, 1;
  0, 0, 1, 6,  1;
  0, 0, 0, 6, 10,  1;
  0, 0, 0, 1, 20, 15,   1;
  0, 0, 0, 0, 10, 50,  21,   1;
  0, 0, 0, 0,  1, 50, 105,  28,  1;
  0, 0, 0, 0,  0, 15, 175, 196, 36, 1;
  ...
T(5,4)=6 because we have 13/2/4/5, 14/2/3/5. 15/2/3/4, 1/24/3/5, 1/25/3/4 and 1/2/35/4.
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->(1/k)*binomial(k,n-k)*binomial(k,n-k+1): for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := (1/k)*Binomial[k, n - k]*Binomial[k, n - k + 1];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 06 2018, from Maple *)
  • PARI
    T(n,k) = (1/k)*binomial(k, n-k)*binomial(k, n-k+1); \\ Andrew Howroyd, Feb 27 2018

Formula

Sum_{k=1..n} k*T(n,k) = A110320(n).
T(n,k) = (1/k)*binomial(k, n-k)*binomial(k, n-k+1).
G.f.: (1 - tz - tz^2 - sqrt(1 - 2tz - 2tz^2 + t^2*z^2 - 2t^2*z^3 + t^2*z^4))/(2tz^2).
Previous Showing 51-60 of 190 results. Next