A319360
Expansion of e.g.f. (1 + x)*exp(log(1 + x)^2/2).
Original entry on oeis.org
1, 1, 1, 0, 2, -10, 64, -476, 4038, -38466, 406446, -4716624, 59621748, -815339460, 11992028112, -188746844040, 3165161922492, -56333871521508, 1060525150393308, -21053827255670976, 439558554065307288, -9627439778044075512, 220722057792327097920, -5286159770781782374800
Offset: 0
-
seq(n!*coeff(series((1 + x)*exp(log(1 + x)^2/2),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 09 2019
-
nmax = 23; CoefficientList[Series[(1 + x) Exp[Log[1 + x]^2/2], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] HypergeometricU[-k/2, 1/2, -1/2]/(-1/2)^(k/2), {k, 0, n}], {n, 0, 23}]
A369784
Expansion of e.g.f. exp( (exp(2*(exp(x)-1))-1)/2 ).
Original entry on oeis.org
1, 1, 4, 21, 137, 1068, 9663, 99249, 1137858, 14373531, 198031153, 2951536030, 47270242621, 808917666365, 14720125466652, 283667520561633, 5768057979319853, 123364873473674732, 2767400573883314755, 64950007415991458989, 1591227433994704322322
Offset: 0
A375175
Expansion of e.g.f. exp( (exp( (exp(4*x) - 1)/2 ) - 1)/2 ).
Original entry on oeis.org
1, 1, 7, 63, 713, 9753, 156111, 2858103, 58845105, 1344371793, 33713484151, 919838859151, 27105053988793, 857310780134825, 28953291147179007, 1039373409620929671, 39505610599553955809, 1584411299793530257697, 66846625774893448843879
Offset: 0
A380258
Expansion of e.g.f. exp( (1/(1-5*x)^(2/5) - 1)/2 ).
Original entry on oeis.org
1, 1, 8, 106, 1954, 46082, 1323064, 44750644, 1741897340, 76672512316, 3764746706176, 203976645319448, 12086590557877144, 777464693554778776, 53948773488864143072, 4016672567726156437744, 319379204127841984947472, 27010128651142535536409360, 2420802590890201251989984128
Offset: 0
-
CoefficientList[Series[Exp[ (1/(1-5*x)^(2/5) - 1)/2 ],{x,0,18}],x]Range[0,18]! (* Stefano Spezia, Mar 31 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1/(1-5*x)^(2/5)-1)/2)))
A380262
Expansion of e.g.f. exp( ((1+5*x)^(2/5) - 1)/2 ).
Original entry on oeis.org
1, 1, -2, 16, -206, 3682, -84236, 2348704, -77241380, 2926735516, -125540336024, 6013069027648, -318093606114536, 18418565715581656, -1158626159228481488, 78679416565851286144, -5736477278907382585328, 446936684375920051751440, -37056888825921886749507872
Offset: 0
A305710
Expansion of e.g.f. exp(sec(x)*exp(x) - 1).
Original entry on oeis.org
1, 1, 3, 11, 53, 297, 1959, 14499, 120409, 1097025, 10931771, 117685163, 1363889133, 16887554569, 222672557631, 3110742121059, 45912214062961, 713290136581697, 11636755988405555, 198800967493444875, 3549276499518132325, 66076184834921382313, 1280502976522048458647
Offset: 0
exp(sec(x)*exp(x) - 1) = 1 + x + 3*x^2/2! + 11*x^3/3! + 53*x^4/4! + 297*x^5/5! + 1959*x^6/6! + 14499*x^7/7! + ...
-
a:=series(exp(sec(x)*exp(x)-1),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[Exp[Sec[x] Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[(2 I)^k EulerE[k, 1/2 - I/2] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
A323630
Expansion of e.g.f. exp(log(1 - x)^2/2)/(1 - x). This is also the transform of the involution numbers given by the signless Stirling cycle numbers.
Original entry on oeis.org
1, 1, 3, 12, 62, 390, 2884, 24472, 234086, 2490030, 29139306, 371878056, 5138306700, 76398336924, 1215973642584, 20624305367520, 371309259462972, 7071037633297116, 141997246553420052, 2998654325698019280, 66426777891686458728, 1540117294435707244488, 37296711627004301923056
Offset: 0
-
seq(n!*coeff(series(exp(log(1-x)^2/2)/(1-x),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 28 2019
-
nmax = 22; CoefficientList[Series[Exp[Log[1 - x]^2/2]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] HypergeometricU[-k/2, 1/2, -1/2]/(-1/2)^(k/2), {k, 0, n}], {n, 0, 22}]
-
my(x='x + O('x^25)); Vec(serlaplace(exp(log(1 - x)^2/2)/(1 - x))) \\ Michel Marcus, Jan 24 2019
A337012
a(n) = exp(-1/2) * Sum_{k>=0} (2*k + n)^n / (2^k * k!).
Original entry on oeis.org
1, 2, 11, 92, 1025, 14232, 236403, 4568720, 100670529, 2490511776, 68341981051, 2059882505408, 67645498798721, 2403948686290816, 91914992104815459, 3762299973887526144, 164148252324092964993, 7604537914425558921728, 372812121514187124192875
Offset: 0
-
Table[n! SeriesCoefficient[Exp[n x + (Exp[2 x] - 1)/2], {x, 0, n}], {n, 0, 18}]
Unprotect[Power]; 0^0 = 1; Table[Sum[Binomial[n, k] n^(n - k) 2^k BellB[k, 1/2], {k, 0, n}], {n, 0, 18}]
Comments