cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A187480 Rank transform of the sequence round(n/2); complement of A187481.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 9, 10, 11, 13, 15, 16, 17, 19, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 57, 59, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 104, 106, 108, 109, 110, 112, 113, 114, 115, 117, 119, 120, 121, 123, 124, 125
Offset: 1

Views

Author

Clark Kimberling, Mar 10 2011

Keywords

Comments

See A187224. A187480 is the rank transform of (A004525 with initial two zeros removed).

Crossrefs

Programs

  • Mathematica
    seqA = Table[Round[n/2], {n, 1, 180}]  (* A004524 *)
    seqB = Table[n, {n, 1, 80}];           (* A000027 *)
    jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}],
    Flatten@Position[#1, {_, 2}]} &[Sort@Flatten[{{#1, 1} & /@ seqA,
    {#1, 2} & /@ seqB}, 1]];
    limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank[{seqA, seqB}]][[1]]                                     (* A187480 *)
    Complement[Range[Length[seqA]], limseqU]  (* A187481 *)
    (* by Peter J. C. Moses, Mar 10 2011 *)

A380286 Number of distinct values of the number of regions between the free polyominoes with n cells and their bounding boxes.

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 15, 16, 17, 17, 17, 18, 19, 19, 19, 20, 21, 21, 21, 22, 23, 23, 23, 24, 25, 25, 25, 26, 27, 27, 27, 28, 29, 29, 29, 30, 31, 31, 31, 32, 33, 33, 33, 34, 35, 35, 35, 36, 37, 37, 37
Offset: 1

Views

Author

Omar E. Pol, Jan 24 2025

Keywords

Comments

The regions include any holes in the polyominoes.
From Andrew Howroyd, Mar 01 2025: (Start)
Consider the following sequence of polyominoes for n >= 5:
O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O O O O
O O O O O O O O
This construction shows how the number of regions between the polyomino and its bounding box can be increased by 2 with the addition of 4 cells. It is also easy to see that any number of fewer holes can also be realized. Moreover, this construction gives the greatest number of regions since except for four corner regions every other region must be bounded on 3 sides by at least one cell separating it from a neighboring region. This leads to a formula for a(n). (End)

Examples

			Illustration for n = 4:
The free polyominoes with four cells are also called free tetrominoes.
The five free tetrominoes are as shown below:
    _
   |_|     _       _       _
   |_|    |_|     |_|_    |_|_     _ _
   |_|    |_|_    |_|_|   |_|_|   |_|_|
   |_|    |_|_|     |_|   |_|     |_|_|
.
The bounding boxes are respectively as shown below:
    _
   | |     _ _     _ _     _ _
   | |    |   |   |   |   |   |    _ _
   | |    |   |   |   |   |   |   |   |
   |_|    |_ _|   |_ _|   |_ _|   |_ _|
.
From left to right the number of regions between the free tetrominoes and their bounding boxes are respectively [0, 1, 2, 2, 0], hence there are three distinct values of the number of regions, they are [0, 1, 2], so a(4) = 3.
.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -2, 2, -1}, {1, 1, 2, 3, 5, 5, 5, 6}, 100] (* Paolo Xausa, Mar 02 2025 *)

Formula

From Andrew Howroyd, Mar 01 2025: (Start)
a(n) = A004525(n + 4) for n >= 5.
G.f.: x*(1 - x + 2*x^2 - x^3 + 2*x^4 - 2*x^5 + x^6 - x^7)/((1 - x)^2*(1 + x^2)). (End)
E.g.f.: (exp(x)*(4 + x) + sin(x))/2 - 2 - 2*x - x^2 - x^3/6 - x^4/24. - Stefano Spezia, Mar 03 2025

Extensions

a(8)-a(16) from Pontus von Brömssen, Jan 24 2025
a(17)-a(18) from John Mason, Feb 14 2025
a(19) onwards from Andrew Howroyd, Feb 17 2025

A049206 Maximum mean distance between cards during perfect faro shuffles, with cut, to return to original order in A024222.

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 15, 16, 17, 17, 17, 18, 19, 19, 19, 20, 21, 21, 21, 22, 23, 23, 23, 24, 25, 25, 25, 26, 27, 27, 27, 28, 29, 29, 29, 30, 31, 31, 31, 32, 33, 33, 33, 34, 35, 35, 35, 36, 37, 37, 37
Offset: 1

Views

Author

Keywords

Examples

			Consider n=6. There are 4 shuffles to return to original order in a 6-card deck. The maximum mean distance between cards during these 4 shuffles and cuts, s1-s4, is 3, computed as follows: s1, 415263, cut, 263415; s2, 421653, cut 653421; s3, 462513, cut 513462; s4, 456123, cut, 123456. Mean distances: s1 15/5=3, maximum; s2 7/5=1.4; s3 13/5=2.6; s4 5/5; mean cumulative distance: 40/20=2.
		

Crossrefs

Formula

Take difference between successive cards after each shuffle. Compute mean (if necessary, round to nearest integer). Retain until replaced by a higher mean in a succeeding shuffle.
(1/4) {2n + 2 - (-1)^[n/2] + (-1)^[(n-1)/2] }. - Ralf Stephan, Jun 10 2005
a(n)=A004525(n), n>1. [From R. J. Mathar, Oct 15 2008]

A104563 A floretion-generated sequence relating to centered square numbers.

Original entry on oeis.org

0, 1, 3, 5, 8, 13, 19, 25, 32, 41, 51, 61, 72, 85, 99, 113, 128, 145, 163, 181, 200, 221, 243, 265, 288, 313, 339, 365, 392, 421, 451, 481, 512, 545, 579, 613, 648, 685, 723, 761, 800, 841, 883, 925, 968, 1013, 1059, 1105, 1152, 1201, 1251
Offset: 0

Views

Author

Creighton Dement, Mar 15 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: a(n) = 1vesrokseq[A*B] with A = - .5'i - .5i' + .5'ii' + .5e, B = + .5'ii' - .5'jj' + .5'kk' + .5e. RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code). Note: many slight variations of the "RokType" already exist, such that it has become difficult to assign them all names.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -4, 4, -3, 1}, {0, 1, 3, 5, 8}, 60] (* Amiram Eldar, Dec 14 2024 *)
  • PARI
    concat(0, Vec(x*(1 + x)*(1 - x + x^2) / ((1 - x)^3*(1 + x^2)) + O(x^40))) \\ Colin Barker, Apr 29 2019

Formula

G.f.: x*(1 + x^3)/((1 + x^2)*(1 - x)^3).
FAMP result: 2*a(n) + 2*A004525(n+1) = A104564(n) + a(n+1).
Superseeker results:
a(2*n+1) = A001844(n) = 2*n*(n+1) + 1 (Centered square numbers);
a(n+1) - a(n) = A098180(n) (Odd numbers with two times the odd numbers repeated in order between them);
a(n) + a(n+2) = A059100(n+1) = A010000(n+1);
a(n+2) - a(n) = A047599(n+1) (Numbers that are congruent to {0, 3, 4, 5} mod 8);
a(n+2) - 2*a(n+1) + a(n) = A007877(n+3) (Period 4 sequence with initial period (0, 1, 2, 1));
Coefficients of g.f.*(1-x)/(1+x) = convolution of this with A280560 gives A004525;
Coefficients of g.f./(1+x) = convolution of this with A033999 gives A054925.
a(n) = (1/2)*(n^2 + 1 - cos(n*Pi/2)). - Ralf Stephan, May 20 2007
From Colin Barker, Apr 29 2019: (Start)
a(n) = (2 - (-i)^n - i^n + 2*n^2) / 4 where i=sqrt(-1).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4. (End)
a(n) = A011848(n-1)+A011848(n+2). - R. J. Mathar, Sep 11 2019
Sum_{n>=1} 1/a(n) = Pi^2/48 + (Pi/2) * tanh(Pi/2) + (Pi/(4*sqrt(2)) * tanh(Pi/(2*sqrt(2)))). - Amiram Eldar, Dec 14 2024

Extensions

Stephan's formula corrected by Bruno Berselli, Apr 29 2019

A215415 a(2*n) = n, a(4*n+1) = 2*n-1, a(4*n+3) = 2*n+3.

Original entry on oeis.org

0, -1, 1, 3, 2, 1, 3, 5, 4, 3, 5, 7, 6, 5, 7, 9, 8, 7, 9, 11, 10, 9, 11, 13, 12, 11, 13, 15, 14, 13, 15, 17, 16, 15, 17, 19, 18, 17, 19, 21, 20, 19, 21, 23, 22, 21, 23, 25, 24, 23, 25, 27, 26, 25, 27, 29, 28, 27, 29, 31, 30, 29, 31, 33, 32, 31, 33, 35, 34, 33, 35, 37
Offset: 0

Views

Author

Paul Curtz, Aug 09 2012

Keywords

Comments

a(n) and higher order differences in further rows:
0, -1, 1, 3, 2, 1,
-1, 2, 2, -1, -1, -2, A134430(n).
3, 0, -3, 0, 3, 0,
-3, -3, 3, 3, -3, -3,
0, 6, 0, -6, 0, 6,
6, -6, -6, 6, 6, -6.
a(n) is the binomial transform of 0, -1, 3, -3, 0, 6, -12, 12, 0, -24, 48, -48, 0, 96..., essentially negated A134813.
By definition, all differences a(n+k)-a(n) are periodic sequences with period length 4. For k=1, 3 and 4 these are A134430, A021307 and A007395, for example.

Crossrefs

Quadrisections: A005843, A060747, A005408, A144396.

Programs

  • Mathematica
    Flatten[Table[{2n, 2n - 1, 2n + 1, 2n + 3}, {n, 0, 19}]] (* Alonso del Arte, Aug 09 2012 *)
  • PARI
    a(n) = ((-3*I)*((-I)^n-I^n)+2*n)/4 \\ Colin Barker, Oct 19 2015
    
  • PARI
    concat(0, Vec(-x*(1-3*x+x^2)/((x^2+1)*(x-1)^2) + O(x^100))) \\ Colin Barker, Oct 19 2015

Formula

a(2*n) = n, a(2*n+1) = A097062(n+1).
a(n) = (A214297(n+1) - A214297(n-1))/2.
a(3*n) =3*A004525(n).
a(n) = +2*a(n-1) -2*a(n-2) +2*a(n-3) -a(n-4).
G.f. -x*(1-3*x+x^2) / ( (x^2+1)*(x-1)^2 ). - R. J. Mathar, Aug 11 2012
a(n) = ((-3*I)*((-I)^n-I^n)+2*n)/4. - Colin Barker, Oct 19 2015
Previous Showing 21-25 of 25 results.