Original entry on oeis.org
1, 12, 124, 1338, 14656, 161082, 1771624, 19487298, 214359136, 2357948202, 25937425624, 285311672658, 3138428380816, 34522712152122, 379749833599624, 4177248169448418, 45949729863637696, 505447028499424842
Offset: 0
A225472
Triangle read by rows, k!*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 3, 4, 21, 18, 8, 117, 270, 162, 16, 609, 2862, 4212, 1944, 32, 3093, 26550, 72090, 77760, 29160, 64, 15561, 230958, 1031940, 1953720, 1662120, 524880, 128, 77997, 1941030, 13429962, 39735360, 57561840, 40415760, 11022480, 256, 390369, 15996222, 165198852
Offset: 0
[n\k][0, 1, 2, 3, 4, 5, 6 ]
[0] 1,
[1] 2, 3,
[2] 4, 21, 18,
[3] 8, 117, 270, 162,
[4] 16, 609, 2862, 4212, 1944,
[5] 32, 3093, 26550, 72090, 77760, 29160,
[6] 64, 15561, 230958, 1031940, 1953720, 1662120, 524880.
-
SF_SO := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*k*SF_SO(n-1, k-1, m) + (m*(k+1)-1)*SF_SO(n-1, k, m) end:
seq(print(seq(SF_SO(n, k, 3), k=0..n)), n = 0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]; Table[ SFSO[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+ (m*k+1)*EulerianNumber(n-1, k, m)
def SF_SO(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))
for n in (0..6): [SF_SO(n, k, 3) for k in (0..n)]
A248216
a(n) = 6^n - 2^n.
Original entry on oeis.org
0, 4, 32, 208, 1280, 7744, 46592, 279808, 1679360, 10077184, 60465152, 362795008, 2176778240, 13060685824, 78364147712, 470184951808, 2821109841920, 16926659313664, 101559956406272, 609359739486208, 3656158439014400, 21936950638280704
Offset: 0
-
[6^n-2^n: n in [0..25]];
-
Table[6^n - 2^n, {n, 0, 25}] (* or *) CoefficientList[Series[4x/((1-2x)(1-6x)), {x, 0, 30}], x]
LinearRecurrence[{8,-12},{0,4},30] (* Harvey P. Dale, Dec 21 2019 *)
-
[2^n*(3^n -1) for n in (0..25)] # G. C. Greubel, Feb 09 2021
A248338
a(n) = 10^n - 4^n.
Original entry on oeis.org
0, 6, 84, 936, 9744, 98976, 995904, 9983616, 99934464, 999737856, 9998951424, 99995805696, 999983222784, 9999932891136, 99999731564544, 999998926258176, 9999995705032704, 99999982820130816, 999999931280523264, 9999999725122093056, 99999998900488372224
Offset: 0
Cf. similar sequences listed in
A248337.
-
[10^n-4^n: n in [0..30]];
-
Table[10^n - 4^n, {n, 0, 30}] (* or *)
CoefficientList[Series[(6 x)/((1-4 x)(1-10 x)), {x, 0, 30}], x]
-
vector(20,n,10^(n-1)-4^(n-1)) \\ Derek Orr, Oct 05 2014
-
def A248338(n): return pow(10,n) - pow(4,n)
print([A248338(n) for n in range(41)]) # G. C. Greubel, Nov 13 2024
A356198
Number of edge covers in the n-book graph.
Original entry on oeis.org
5, 41, 233, 1217, 6185, 31121, 155993, 780737, 3905225, 19529201, 97652153, 488273057, 2441389865, 12206998481, 61035090713, 305175650177, 1525878644105, 7629394006961, 38146971607673, 190734861184097, 953674312211945, 4768371573642641
Offset: 1
-
Table[2 5^n - 2^(n + 1) - 1, {n, 20}]
LinearRecurrence[{8, -17, 10}, {5, 41, 233}, 20]
CoefficientList[Series[(10 x^2 - x - 5)/((x - 1) (2 x - 1) (5 x - 1)), {x, 0, 20}], x]
Comments