cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A155595 11^n+2^n-1.

Original entry on oeis.org

1, 12, 124, 1338, 14656, 161082, 1771624, 19487298, 214359136, 2357948202, 25937425624, 285311672658, 3138428380816, 34522712152122, 379749833599624, 4177248169448418, 45949729863637696, 505447028499424842
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-11*x)+1/(1-2*x)-1/(1-x). E.g.f.: e^(11*x)+e^(2*x)-e^x.
a(n)=13*a(n-1)-22*a(n-2)-10 with a(0)=1, a(1)=12 - Vincenzo Librandi, Jul 21 2010

A225472 Triangle read by rows, k!*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 2, 3, 4, 21, 18, 8, 117, 270, 162, 16, 609, 2862, 4212, 1944, 32, 3093, 26550, 72090, 77760, 29160, 64, 15561, 230958, 1031940, 1953720, 1662120, 524880, 128, 77997, 1941030, 13429962, 39735360, 57561840, 40415760, 11022480, 256, 390369, 15996222, 165198852
Offset: 0

Views

Author

Peter Luschny, May 17 2013

Keywords

Comments

The Stirling-Frobenius subset numbers are defined in A225468 (see also the Sage program).

Examples

			[n\k][0,     1,      2,       3,       4,       5,      6 ]
[0]   1,
[1]   2,     3,
[2]   4,    21,     18,
[3]   8,   117,    270,     162,
[4]  16,   609,   2862,    4212,    1944,
[5]  32,  3093,  26550,   72090,   77760,   29160,
[6]  64, 15561, 230958, 1031940, 1953720, 1662120, 524880.
		

Crossrefs

Cf. A131689 (m=1), A145901 (m=2), A225473 (m=4).
Cf. A225466, A225468, columns: A000079, 3*A016127, 3^2*2!*A016297, 3^3*3!*A025999.

Programs

  • Maple
    SF_SO := proc(n, k, m) option remember;
    if n = 0 and k = 0 then return(1) fi;
    if k > n or k < 0 then return(0) fi;
    m*k*SF_SO(n-1, k-1, m) + (m*(k+1)-1)*SF_SO(n-1, k, m) end:
    seq(print(seq(SF_SO(n, k, 3), k=0..n)), n = 0..5);
  • Mathematica
    EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]; Table[ SFSO[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
  • Sage
    @CachedFunction
    def EulerianNumber(n, k, m) :
        if n == 0: return 1 if k == 0 else 0
        return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+ (m*k+1)*EulerianNumber(n-1, k, m)
    def SF_SO(n, k, m):
        return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))
    for n in (0..6): [SF_SO(n, k, 3) for k in (0..n)]

Formula

For a recurrence see the Maple program.
T(n, 0) ~ A000079; T(n, 1) ~ A005057; T(n, n) ~ A032031.
From Wolfdieter Lang, Apr 10 2017: (Start)
E.g.f. for sequence of column k: exp(2*x)*(exp(3*x) - 1)^k, k >= 0. From the Sheffer triangle S2[3,2] = A225466 with column k multiplied with k!.
O.g.f. for sequence of column k is 3^k*k!*x^k/Product_{j=0..k} (1 - (2+3*j)*x), k >= 0.
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k, j)*(2+3*j)^n, 0 <= k <= n.
Three term recurrence (see the Maple program): T(n, k) = 0 if n < k , T(n, -1) = 0, T(0,0) = 1, T(n, k) = 3*k*T(n-1, k-1) + (2 + 3*k)*T(n-1, k) for n >= 1, k=0..n.
For the column scaled triangle (with diagonal 1s) see A225468, and the Bala link with (a,b,c) = (3,0,2), where Sheffer triangles are called exponential Riordan triangles.
(End)
The e.g.f. of the row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k is exp(2*z)/(1 - x*(exp(3*z) - 1)). - Wolfdieter Lang, Jul 12 2017

A248216 a(n) = 6^n - 2^n.

Original entry on oeis.org

0, 4, 32, 208, 1280, 7744, 46592, 279808, 1679360, 10077184, 60465152, 362795008, 2176778240, 13060685824, 78364147712, 470184951808, 2821109841920, 16926659313664, 101559956406272, 609359739486208, 3656158439014400, 21936950638280704
Offset: 0

Views

Author

Vincenzo Librandi, Oct 04 2014

Keywords

Crossrefs

Sequences of the form k^n - 2^n: A001047 (k=3), A020522 (k=4), A005057 (k=5), this sequence (k=6), A190540 (k=7), A248217 (k=8), A191465 (k=9), A060458 (k=10), A139740 (k=11).

Programs

  • Magma
    [6^n-2^n: n in [0..25]];
    
  • Mathematica
    Table[6^n - 2^n, {n, 0, 25}] (* or *) CoefficientList[Series[4x/((1-2x)(1-6x)), {x, 0, 30}], x]
    LinearRecurrence[{8,-12},{0,4},30] (* Harvey P. Dale, Dec 21 2019 *)
  • Sage
    [2^n*(3^n -1) for n in (0..25)] # G. C. Greubel, Feb 09 2021

Formula

G.f.: 4*x/((1-2*x)*(1-6*x)).
a(n) = 8*a(n-1) - 12*a(n-2).
a(n) = 2^n*(3^n - 1) = A000079(n) * A024023(n).
E.g.f.: exp(6*x) - exp(2*x) = 2*exp(4*x)*sinh(2*x). - G. C. Greubel, Feb 09 2021
a(n) = 4*A016129(n-1). - R. J. Mathar, Mar 10 2022
a(n) = A000400(n) - A000079(n). - Bernard Schott, Mar 27 2022

A248338 a(n) = 10^n - 4^n.

Original entry on oeis.org

0, 6, 84, 936, 9744, 98976, 995904, 9983616, 99934464, 999737856, 9998951424, 99995805696, 999983222784, 9999932891136, 99999731564544, 999998926258176, 9999995705032704, 99999982820130816, 999999931280523264, 9999999725122093056, 99999998900488372224
Offset: 0

Views

Author

Vincenzo Librandi, Oct 05 2014

Keywords

Crossrefs

Cf. similar sequences listed in A248337.

Programs

  • Magma
    [10^n-4^n: n in [0..30]];
    
  • Mathematica
    Table[10^n - 4^n, {n, 0, 30}] (* or *)
    CoefficientList[Series[(6 x)/((1-4 x)(1-10 x)), {x, 0, 30}], x]
  • PARI
    vector(20,n,10^(n-1)-4^(n-1)) \\ Derek Orr, Oct 05 2014
    
  • Python
    def A248338(n): return pow(10,n) - pow(4,n)
    print([A248338(n) for n in range(41)]) # G. C. Greubel, Nov 13 2024

Formula

G.f.: 6*x/((1-4*x)*(1-10*x)).
a(n) = 14*a(n-1) - 40*a(n-2).
a(n) = 2^n*(5^n - 2^n) = A000079(n) * A005057(n) = A011557(n) - A000302(n).
a(n+1) = 6*A016157(n). [Bruno Berselli, Oct 05 2014]
E.g.f.: 2*exp(7*x)*sinh(3*x). - G. C. Greubel, Nov 13 2024

A356198 Number of edge covers in the n-book graph.

Original entry on oeis.org

5, 41, 233, 1217, 6185, 31121, 155993, 780737, 3905225, 19529201, 97652153, 488273057, 2441389865, 12206998481, 61035090713, 305175650177, 1525878644105, 7629394006961, 38146971607673, 190734861184097, 953674312211945, 4768371573642641
Offset: 1

Views

Author

Eric W. Weisstein, Jul 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2 5^n - 2^(n + 1) - 1, {n, 20}]
    LinearRecurrence[{8, -17, 10}, {5, 41, 233}, 20]
    CoefficientList[Series[(10 x^2 - x - 5)/((x - 1) (2 x - 1) (5 x - 1)), {x, 0, 20}], x]

Formula

a(n) = 2*5^n - 2^(n + 1) - 1.
G.f.: x*(10*x^2-x-5)/((x-1)*(2*x-1)*(5*x-1)).
a(n) = 8*a(n-1) - 17*a(n-2) + 10*a(n-3).
a(n) = 2*A005057(n) - 1 = 6*A016127(n-1) - 1. - Hugo Pfoertner, Jul 29 2022
Previous Showing 11-15 of 15 results.