cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A054495 Smallest k such that n/k is a Fibonacci number.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 7, 1, 3, 2, 11, 4, 1, 7, 3, 2, 17, 6, 19, 4, 1, 11, 23, 3, 5, 2, 9, 14, 29, 6, 31, 4, 11, 1, 7, 12, 37, 19, 3, 5, 41, 2, 43, 22, 9, 23, 47, 6, 49, 10, 17, 4, 53, 18, 1, 7, 19, 29, 59, 12, 61, 31, 3, 8, 5, 22, 67, 2, 23, 14, 71, 9, 73, 37, 15, 38, 77, 6, 79, 10, 27, 41
Offset: 1

Views

Author

Henry Bottomley, Apr 04 2000

Keywords

Examples

			a(10)=2 because 10/1=10 is not a Fibonacci number but 10/2=5 is.
		

Crossrefs

Programs

  • PARI
    A010056(n)=my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8))
    a(n)=fordiv(n,d,if(A010056(n/d), return(d))) \\ Charles R Greathouse IV, Nov 05 2014
    
  • Python
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A054495(n): return next(d for d in divisors(n) if is_square(m:=5*(n//d)**2-4) or is_square(m+8)) # Chai Wah Wu, May 06 2024

Formula

a(n) = n/A054494(n). [Corrected by Charles R Greathouse IV, Nov 05 2014]

Extensions

a(34), a(55), a(68) corrected by Charles R Greathouse IV, Nov 06 2014

A293431 a(n) is the number of Jacobsthal numbers dividing n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 2, 1, 2, 3, 2, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 3, 2, 2, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 3, 2, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Examples

			For n = 15, whose divisors are [1, 3, 5, 15], the first three, 1, 3 and 5 are all in A001045, thus a(15) = 3.
For n = 21, whose divisors are [1, 3, 7, 21], 1, 3 and 21 are in A001045, thus a(21) = 3.
For n = 105, whose divisors are [1, 3, 5, 7, 15, 21, 35, 105], only the divisors 1, 3, 5 and 21 are in A001045, thus a(105) = 4.
		

Crossrefs

Programs

  • Mathematica
    With[{s = LinearRecurrence[{1, 2}, {0, 1}, 24]}, Array[DivisorSum[#, 1 &, MemberQ[s, #] &] &, 105]] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    A147612aux(n,i) = if(!(n%2),n,A147612aux((n+i)/2,-i));
    A147612(n) = 0^(A147612aux(n,1)*A147612aux(n,-1));
    A293431(n) = sumdiv(n,d,A147612(d));
    
  • Python
    from sympy import divisors
    def A293431(n): return sum(1 for d in divisors(n,generator=True) if (m:=3*d+1).bit_length()>(m-3).bit_length()) # Chai Wah Wu, Apr 18 2025

Formula

a(n) = Sum_{d|n} A147612(d).
a(n) = A293433(n) + A147612(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=2} 1/A001045(n) = 1.718591611927... . - Amiram Eldar, Jan 01 2024

A129655 Numbers that set a new record for number of Fibonacci divisors.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 55440, 720720, 12252240, 232792560, 6750984240, 276790353840, 12732356276640, 523410559111440, 24076885719126240, 1131613628798933280, 100713612963105061920, 20042008979657907322080
Offset: 1

Views

Author

Jason Earls, May 19 2007

Keywords

Comments

From Donovan Johnson, Jul 07 2009: (Start)
a(15) <= 598420745002080,
a(16) <= 36503665445126880,
a(17) <= 1131613628798933280,
a(18) <= 100713612963105061920. (End)
From Robert Israel, Sep 26 2019: (Start)
a(15) <= 523410559111440,
a(16) <= 24076885719126240. (End)
From David A. Corneth, Sep 27 2019: (Start)
a(19) <= 20042008979657907322080,
a(20) <= 4669788092260292406044640,
a(21) <= 1312210453925142166098543840,
a(22) <= 414821946023574034721351415840,
a(23) <= 116564966832624303756699747851040,
a(24) <= 37417354353272401505900619060183840,
a(25) <= 19494441618054921184574222530355780640,
a(26) <= 31132623264033709131765033380978181682080,
a(27) <= 67277598873576845433744237136293850614974880. (End)
From a(1) up to a(14), last known term, this sequence is equivalent to: a(n) is the smallest number that has exactly n Fibonacci divisors (A000045). The products of the new Fibonacci divisors that appear successively are in A349100. - Bernard Schott, Jul 15 2022

Examples

			5040 has 60 divisors with 7 of them being Fibonacci numbers, namely 1, 2, 3, 5, 8, 21 and 144.
		

References

  • J. Earls, Red Zen, Lulu Press, NY, 2006, p. 105.

Crossrefs

Formula

a(n) <= A035105(n+1). - Daniel Suteu, Sep 27 2019

Extensions

More terms from Donovan Johnson, Feb 26 2008
a(14) from Donovan Johnson, Jul 07 2009
a(15)-a(19) confirmed by David A. Corneth, Sep 06 2024

A239930 Number of distinct quarter-squares dividing n.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 2, 1, 5, 2, 2, 2, 3, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 6, 2, 3, 1, 3, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 2, 5, 1, 3, 1, 3, 1, 2, 1, 8, 1, 2, 2, 3, 1, 3, 1, 5, 3, 2, 1, 6, 1, 2, 1, 3, 1, 6, 1, 3, 1, 2, 1, 6, 1, 3, 2, 6, 1, 3, 1, 3, 1, 2, 1, 7, 1, 3
Offset: 1

Views

Author

Omar E. Pol, Jun 19 2014

Keywords

Comments

For more information about the quarter-squares see A002620.

Examples

			For n = 12 the quarter-squares <= 12 are [0, 0, 1, 2, 4, 6, 9, 12]. There are five quarter-squares that divide 12; they are [1, 2, 4, 6, 12], so a(12) = 5.
		

Crossrefs

Programs

  • Haskell
    a239930 = sum . map a240025 . a027750_row
    -- Reinhard Zumkeller, Jul 05 2014
    
  • Maple
    isA002620 := proc(n)
        local k,qsq ;
        for k from 0 do
            qsq := floor(k^2/4) ;
            if n = qsq then
                return true;
            elif qsq > n then
                return false;
            end if;
        end do:
    end proc:
    A239930 := proc(n)
        local a,d ;
        a :=0 ;
        for d in numtheory[divisors](n) do
            if isA002620(d) then
                a:= a+1 ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Jul 03 2014
  • Mathematica
    qsQ[n_] := AnyTrue[Range[Ceiling[2 Sqrt[n]]], n == Floor[#^2/4]&]; a[n_] := DivisorSum[n, Boole[qsQ[#]]&]; Array[a, 110] (* Jean-François Alcover, Feb 12 2018 *)
  • PARI
    a(n) = sumdiv(n, d, issquare(d) + issquare(4*d + 1)); \\ Amiram Eldar, Dec 31 2023

Formula

a(n) = Sum_{k=1..A000005(n)} A240025(A027750(n,k)). - Reinhard Zumkeller, Jul 05 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) + 1 = A013661 + 1 = 2.644934... . - Amiram Eldar, Dec 31 2023

A304094 Number of Lucas numbers (A000204: 1, 3, 4, 7, 11, ... excluding 2) that divide n.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 1, 2, 3, 2, 2, 1, 2, 3, 1, 2, 4, 1, 1, 2, 2, 1, 3, 1, 3, 2, 1, 2, 3, 2, 1, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 1, 3, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 1, 2, 3, 3, 2, 1, 2, 2, 1, 1, 4, 1, 1, 3, 3, 1, 3, 2, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

  • PARI
    isA000204(n) = { my(u1=1,u2=3,old_u1); if(n<=2,(n%2),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304094(n) = sumdiv(n,d,isA000204(d));

Formula

a(n) = A304092(n) - A059841(n).
a(n) = A304096(n) + A079978(n) + 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 = 1.962858... . - Amiram Eldar, Dec 31 2023

A294880 Number of divisors of n that are in Perrin sequence, A001608.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 0, 3, 0, 2, 2, 1, 1, 2, 0, 3, 2, 2, 0, 3, 1, 1, 1, 2, 1, 4, 0, 1, 1, 2, 2, 3, 0, 1, 2, 3, 0, 3, 0, 2, 2, 1, 0, 3, 1, 3, 3, 1, 0, 2, 1, 2, 1, 2, 0, 5, 0, 1, 2, 1, 1, 3, 0, 3, 1, 4, 0, 3, 0, 1, 2, 1, 1, 3, 0, 3, 1, 1, 0, 4, 2, 1, 2, 2, 0, 5, 1, 1, 1, 1, 1, 3, 0, 2, 1, 3, 0, 4, 0, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n = 22, with divisors [1, 2, 11, 22], both 2 and 22 are in A001608, thus a(22) = 2.
For n = 644, with divisors [1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644], 2, 7 and 644 are in A001608, thus a(644) = 3.
		

Crossrefs

Programs

  • Mathematica
    With[{s = LinearRecurrence[{0, 1, 1}, {3, 2, 5}, 15]}, Table[DivisorSum[n, 1 &, MemberQ[s, #] &], {n, 1, s[[-1]]}]] (* Amiram Eldar, Jan 01 2024 *)
  • PARI
    A001608(n) = if(n<0, 0, polsym(x^3-x-1, n)[n+1]);
    A294878(n) = { my(k=1,v); while((v=A001608(k))A294880(n) = sumdiv(n,d,A294878(d));

Formula

a(n) = Sum_{d|n} A294878(d).
a(n) = A294879(n) + A294878(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = -1/5 + Sum_{n>=3} 1/A001608(n) = 1.603595519775230150708... . - Amiram Eldar, Jan 01 2024

A281689 Expansion of Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)) / Product_{k>=2} (1 - x^Fibonacci(k)).

Original entry on oeis.org

1, 3, 6, 11, 18, 29, 42, 62, 86, 119, 159, 211, 273, 352, 446, 562, 697, 864, 1054, 1284, 1550, 1860, 2220, 2639, 3114, 3669, 4293, 5011, 5823, 6745, 7783, 8956, 10268, 11747, 13390, 15237, 17281, 19561, 22089, 24889, 27979, 31405, 35157, 39309, 43856, 48849, 54319, 60309, 66840, 73992, 81760, 90243
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 27 2017

Keywords

Comments

Total number of parts in all partitions of n into Fibonacci parts (with a single type of 1).
Convolution of A003107 and A005086.

Examples

			a(5) = 18 because we have [5], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 1 + 2 + 3 + 3 + 4 + 5 = 18.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, `if`((t->
          issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],
           b(n, h(i-1))+(p->p+[0, p[1]])(b(n-i, h(min(n-i, i)))))
        end:
    a:= n-> b(n, h(n))[2]:
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    Rest[CoefficientList[Series[Sum[x^Fibonacci[k]/(1 - x^Fibonacci[k]), {k, 2, 20}]/Product[1 - x^Fibonacci[k], {k, 2, 20}], {x, 0, 52}], x]]

Formula

G.f.: Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)) / Product_{k>=2} (1 - x^Fibonacci(k)).
a(n) = Sum_{k=1..n} k * A319394(n,k). - Alois P. Heinz, Sep 18 2018

A349100 a(n) is the product of the new Fibonacci divisors that appear when A129655(n) sets a new record for number of Fibonacci divisors.

Original entry on oeis.org

1, 2, 3, 8, 5, 144, 21, 55, 13, 34, 2584, 377, 6765, 46368
Offset: 1

Views

Author

Bernard Schott, Jul 16 2022

Keywords

Comments

As A129655(n) is also, up to A129655(14), the smallest integer that has exactly n Fibonacci divisors (A000045), a(n) from 1..14 is the new Fibonacci divisor that appears.
Kevin Ryde remarks that for two of the conjectured later terms of A129655, there are more than a single new Fibonacci divisor.

Examples

			A129655(1) = 1 because the smallest integer that has only one Fibonacci divisor is 1; the corresponding Fibonacci divisor is 1, so a(1) = 1.
A129655(6) = 720 and the set of the six Fibonacci divisors of 720 is {1, 2, 3, 5, 8, 144}. Then, A129655(7) = 5040 and the set of the seven Fibonacci divisors of 5040 is {1, 2, 3, 5, 8, 21, 144}. The new Fibonacci divisor that appears in this set is 21, hence a(7) = 21.
A129655(7) = 5040 and the set of the seven Fibonacci divisors of 5040 is {1, 2, 3, 5, 8, 21, 144}. Then A129655(8) = 55440 and the set of the eight Fibonacci divisors of 55040 is {1, 2, 3, 5, 8, 21, 55, 144}. The new Fibonacci divisor that appears is 55, hence a(8) = 55.
		

Crossrefs

A244964 Number of distinct generalized pentagonal numbers dividing n.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 3, 1, 3, 3, 2, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 4, 1, 2, 1, 2, 4, 3, 1, 2, 1, 4, 1, 3, 1, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 2, 1, 5, 1, 2, 2, 2, 2, 3, 1, 2, 1, 6, 1, 3, 1, 2, 3, 2, 3, 3, 1, 4, 1, 2, 1, 4, 2, 2, 1, 3, 1, 4, 2, 3, 1, 2, 2, 3, 1, 3, 1, 4, 1, 3, 1, 3, 5
Offset: 1

Views

Author

Omar E. Pol, Jul 10 2014

Keywords

Comments

For more information about the generalized pentagonal numbers see A001318.

Examples

			For n = 10 the generalized pentagonal numbers <= 10 are [0, 1, 2, 5, 7]. There are three generalized pentagonal numbers that divide 10; they are [1, 2, 5], so a(10) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, IntegerQ[Sqrt[24*# + 1]] &]; Array[a, 100] (* Amiram Eldar, Dec 31 2023 *)
  • PARI
    a(n) = sumdiv(n, d, issquare(24*d + 1)); \\ Amiram Eldar, Dec 31 2023

Formula

From Amiram Eldar, Dec 31 2023: (Start)
a(n) = Sum_{d|n} A080995(d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 6 - 2*Pi/sqrt(3) = 2.372401... . (End)

A340542 Number of Fibonacci divisors of Fibonacci(n)^2 + 1.

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 4, 4, 3, 5, 5, 3, 5, 5, 3, 5, 5, 3, 5, 6, 4, 5, 6, 4, 5, 5, 3, 5, 5, 5, 7, 5, 5, 7, 5, 3, 5, 5, 3, 7, 7, 3, 7, 8, 4, 5, 6, 4, 5, 7, 5, 5, 7, 5, 5, 5, 3, 7, 7, 5, 9, 7, 5, 7, 5, 3, 5, 5, 3, 7, 7, 5, 9, 7, 5, 8, 6, 3, 6, 8, 5, 5, 7
Offset: 0

Views

Author

Michel Lagneau, Jan 12 2021

Keywords

Comments

A Fibonacci divisor of a number k is a Fibonacci number that divides k.
It is interesting to compare this sequence with A339669.
We observe that a(2n) = A339669(2n) if n = 5*k + 2 or n = 5*k + 3, with k >= 0, because Lucas(2n)^2 = 5*Fibonacci(2n)^2 + 4 (see A005248: all nonnegative integer solutions of the Pell equation a(n)^2 - 5*b(n)^2 = +4 together with b(n)= A001906(n), n>=0. - Wolfdieter Lang, Aug 31 2004).
So, Lucas(2n)^2 + 1 = 5*(Fibonacci(2n)^2 + 1). Lucas(2n)^2 + 1 and Fibonacci(2n)^2 + 1 have the same Fibonacci divisors for n = 5*k + 2 or n = 5*k + 3. For the other values of n = 5*k, 5*k + 1 or 5*k + 4, 5 is a Fibonacci divisor of Lucas(2n)^2 + 1 but not of Fibonacci(2n)^2 + 1. So for these last three values of n, a(2n) = A339669(2n) - 1 (except for m = 1 and 2, 5*F(m) is never a Fibonacci number).

Examples

			a(13) = 5 because the 5 Fibonacci divisors of Fibonacci(13)^2 + 1 = 233^2 + 1 are 1, 2, 5, 89 and 610.
a(16) = 5 because the 5 Fibonacci divisors of Fibonacci(16)^2 + 1 = 987^2 + 1 are 1, 2, 5, 610, and 1597.
Remark: the 5 Fibonacci divisors of Lucas(16)^2 + 1 = 2207^2 + 1 are 1, 2, 5, 610, and 1597, the index 16 = 2*8 with 8 of the form 5*k + 3.
		

Crossrefs

Programs

  • Maple
    with(combinat,fibonacci):nn:=100:F:={}:
    for k from 0 to nn do:
      F:=F union {fibonacci(k)}:
    od:
       for m from 0 to 90 do:
        f:=fibonacci(m)^2+1:d:=numtheory[divisors](f):
        lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1):
       od:
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); \\ A010056
    a(n) = sumdiv(fibonacci(n)^2+1, d, isfib(d)); \\ Michel Marcus, Jan 12 2021

Formula

a(n) = A005086(A245306(n)). - Michel Marcus, Aug 10 2022
Previous Showing 11-20 of 23 results. Next