cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A124409 Numbers k such that 2k+1, 4k+1, 6k+1 and 8k+1 are primes.

Original entry on oeis.org

165, 765, 1530, 2130, 2475, 3420, 5415, 7695, 9060, 11505, 12705, 13020, 15885, 16650, 20055, 20745, 22530, 24915, 26940, 29670, 32925, 35070, 36885, 39270, 44370, 47730, 48465, 54735, 55860, 56310, 58860, 65655, 66600, 67365, 67650
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[68000], And @@ PrimeQ /@ ({2, 4, 6, 8}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 4, isprime(2*j*k+1)) == 4; \\ Jinyuan Wang, Aug 04 2019

A124410 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1 and 10k+1 are primes.

Original entry on oeis.org

5415, 12705, 13020, 44370, 82950, 98280, 105525, 112200, 115140, 123855, 134250, 134460, 187740, 188745, 210165, 225705, 247170, 256410, 296310, 302085, 367875, 375645, 382890, 399585, 404040, 476340, 487830, 526845, 532095, 566430, 578085
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[600000], And @@ PrimeQ /@ ({2, 4, 6, 8, 10}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 5, isprime(2*j*k+1)) == 5; \\ Jinyuan Wang, Aug 04 2019

A124411 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1, 10k+1 and 12k+1 are primes.

Original entry on oeis.org

12705, 13020, 105525, 256410, 966840, 1707510, 1944495, 2310000, 2478630, 3132675, 3836070, 3976770, 4112430, 4532325, 5499585, 5920005, 6610485, 7390845, 8552250, 10739505, 11120340, 12231450, 12338130, 13243230, 16467255
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], And @@ PrimeQ /@ ({2, 4, 6, 8, 10, 12}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 6, isprime(2*j*k+1)) == 6; \\ Jinyuan Wang, Aug 04 2019

Extensions

Extended by Ray Chandler, Nov 20 2006

A153762 Numbers k such that 8k + 9 is prime.

Original entry on oeis.org

1, 4, 8, 10, 11, 13, 16, 23, 28, 29, 31, 34, 38, 41, 43, 49, 50, 53, 55, 56, 64, 70, 71, 73, 74, 76, 79, 83, 94, 95, 100, 106, 109, 115, 116, 118, 121, 125, 128, 130, 136, 140, 143, 148, 149, 151, 155, 160, 161, 164, 169, 175, 178, 184, 185, 193, 199, 200, 206, 211
Offset: 1

Views

Author

Vincenzo Librandi, Jan 01 2009

Keywords

Comments

One less than the associated term in A005123. - R. J. Mathar, Jan 05 2011

Crossrefs

Cf. A023232.

Programs

A254936 Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A007519(n), n >= 1 (primes congruent to 1 mod 8).

Original entry on oeis.org

9, 11, 13, 19, 25, 15, 21, 23, 35, 41, 25, 21, 37, 49, 23, 39, 29, 25, 57, 35, 27, 59, 65, 33, 43, 29, 49, 55, 51, 41, 37, 69, 81, 39, 59, 35, 65, 71, 77, 83, 51, 67, 47, 43, 79, 39, 97, 69, 49, 59, 41, 87, 93, 61, 47, 57, 89, 53, 101, 79, 59, 85, 55, 91, 103, 81, 115, 53, 49, 63, 83, 73, 111, 59
Offset: 1

Views

Author

Wolfdieter Lang, Feb 18 2015

Keywords

Comments

The corresponding term y = y2(n) of this fundamental solution of the second class of the (generalized) Pell equation x^2 - 2*y^2 = -A007519(n) = -(1 + 8*A005123(n)) is given in A254937(n).
For comments and the Nagell reference see A254934.

Examples

			The first pairs [x2(n), y2(n)] of the fundamental positive solutions of this second class are (the prime A007519(n) appears as first entry):
  [17, [9, 7]], [41, [11, 9]], [73, [13, 11]],
  [89, [19, 15]], [97, [25, 19]], [113, [15, 13]],
  [137, [21, 17]], [193, [23, 19]], [233, [35, 27]],
  [241, [41, 31]], [257, [25, 21]], [281, [21, 19]],
  [313, [37, 29]], [337, [49, 37]], [353, [23, 21]],
  [401, [39, 31]], [409, [29, 25]], [433, [25, 23]],
  [449, [57, 43]], [457, [35, 29]], [521, [27, 25]],
  [569, [59, 45]], [577, [65, 49]], [593, [33, 29]],
  [601, [43, 35]], [617, [29, 27]], [641, [49, 39]], ...
a(4) = -(3*3 - 4*7) = 28 - 9 = 19.
		

Crossrefs

Cf. A007519 (primes == 1 mod 8), A005123 (8k+1 is prime).
Cf. A254937 (corresponding y2-values), A254934 (x1 values), A254935 (y1 values), A255233 (same for primes == 7 mod 8), A255247.

Programs

  • PARI
    apply( {A254936(n, p=A007519(n))=n=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1]*[-3,4]~}, [1..77]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025

Formula

a(n)^2 - 2*A254937(n)^2 = -A007519(n) gives the second smallest positive (proper) solution of this (generalized) Pell equation.
a(n) = -(3*A254934(n) - 4*A254935(n)), n >= 1.

Extensions

More terms from M. F. Hasler, May 22 2025

A230076 a(n) = (A007521(n)-1)/4.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 25, 27, 37, 39, 43, 45, 49, 57, 67, 69, 73, 79, 87, 93, 97, 99, 105, 115, 127, 135, 139, 153, 163, 165, 169, 175, 177, 183, 189, 193, 199, 205, 207, 213, 219, 235, 249, 253, 255, 265, 267, 273, 277, 279, 295, 303, 307
Offset: 1

Views

Author

Wolfdieter Lang, Oct 24 2013

Keywords

Comments

Because A007521(n) are the primes congruent 5 (mod 8) it is clear that a(n) is congruent 1 (mod 2), that is odd.
2*a(n) = A055034(A007521(n)), the degree of the minimal polynomial C(A007521(n), x) of 2*rho(Pi/A007521(n)) (see A187360).

Examples

			The minimal polynomial C(A007521(2), x) = C(13, x) has degree 6 = 2*a(2) because C(13, x) = x^6 - x^5 - 5*x^4 + 4*x^3 + 6*x^2 - 3*x -1.
		

Crossrefs

Cf. A007521, A055034, A187360, 4*A005123 (1 (mod 8) case), A186287 (3 (mod 8) case), A186302 (7 (mod 8) case).

Programs

  • Mathematica
    (Select[8*Range[0, 200] + 5, PrimeQ] - 1)/4 (* Amiram Eldar, Jun 08 2022 *)

Formula

a(n) = (A007521(n)-1)/4.

A023347 Primes which remain prime through 5 iterations of function f(x) = 8x + 1.

Original entry on oeis.org

831167, 1154567, 2502767, 3019787, 3675197, 5056577, 6352487, 14519177, 26724377, 43003577, 47378927, 47695607, 56406197, 86332457, 86611757, 99568757, 121967987, 126435527, 127990997, 128149127, 128975057, 145281557, 155715407
Offset: 1

Views

Author

Keywords

Examples

			First chain is {831167, 6649337, 53194697, 425557577, 3404460617, 27235684937};
If p is congruent to {1,3,7,9} mod 10, then consecutive iterates are congruent to {9,5,7,3}, {3,1,7,5}, {5,9,7,1} respectively; so only 10k+7 may remain prime through five iterations, as sequence demonstrates nicely. - _Labos Elemer_, Jul 23 2003
		

Crossrefs

Programs

  • Mathematica
    k=0; m=8; Do[s=Prime[n]; s1=m*s+1; s2=m*s1+1; s3=m*s2+1; s4=m*s3+1; s5=m*s4+1; If[PrimeQ[s]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5], k=k+1; Print[s]], {n, 1, 1000000}]
    it5Q[n_]:=AllTrue[Rest[NestList[8#+1&,n,5]],PrimeQ]; Select[Prime[Range[ 9*10^6]],it5Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 12 2014 *)

Formula

{p, 8p+1, 64p+9, 512p+73, 4096p+585, 32768p+4681} are all primes, where the initial p is prime.
a(n) == 197 (mod 210). - John Cerkan, Nov 04 2016

A023291 Primes that remain prime through 3 iterations of function f(x) = 8x + 1.

Original entry on oeis.org

2, 1487, 2207, 2927, 8807, 11117, 16187, 17657, 26357, 44927, 45377, 48497, 91757, 110237, 117167, 122327, 125387, 126107, 145007, 170927, 174527, 190787, 193847, 203897, 230567, 244247, 246017, 270287, 280547, 283937, 347957, 362237, 364337
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 8*p+1, 64*p+9 and 512*p+73 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A005123, A023228, and A023260.

Programs

  • Magma
    [n: n in [1..450000] | IsPrime(n) and IsPrime(8*n+1) and IsPrime(64*n+9) and IsPrime(512*n+73)]; // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    okQ[n_]:=And@@PrimeQ[NestList[8#+1&,n,3]]; Select[Prime[Range[50000]],okQ] (* Harvey P. Dale, Jan 09 2011 *)

Formula

a(n) == 17 (mod 30) for n > 1. - John Cerkan, Sep 23 2016

A115248 Values such that A115247(a(n))=1. Values such that A001935(a(n))==2 (mod 4).

Original entry on oeis.org

2, 5, 9, 11, 12, 14, 17, 19, 24, 29, 30, 32, 35, 39, 42, 44, 46, 50, 51, 53, 54, 56, 57, 65, 71, 72, 74, 75, 77, 80, 82, 84, 95, 96, 100, 101, 104, 107, 109, 110, 116, 117, 119, 122, 126, 127, 128, 129, 131, 137, 141, 144, 149, 150, 152, 154, 156, 161, 162, 165, 170
Offset: 0

Views

Author

Christian G. Bower, Jan 17 2006

Keywords

Comments

All values are the sum of a triangular number A000217 and a square A000290.

Crossrefs

A186293 (A007519(n)-1)/2.

Original entry on oeis.org

8, 20, 36, 44, 48, 56, 68, 96, 116, 120, 128, 140, 156, 168, 176, 200, 204, 216, 224, 228, 260, 284, 288, 296, 300, 308, 320, 336, 380, 384, 404, 428, 440, 464, 468, 476, 488, 504, 516, 524, 548, 564, 576, 596, 600, 608
Offset: 1

Views

Author

Marco Matosic, Feb 17 2011

Keywords

Crossrefs

Cf. A186305.

Programs

Formula

a(n) = A186294(n)-1.
a(n) = 4*A005123(n).
Previous Showing 11-20 of 27 results. Next