A124409
Numbers k such that 2k+1, 4k+1, 6k+1 and 8k+1 are primes.
Original entry on oeis.org
165, 765, 1530, 2130, 2475, 3420, 5415, 7695, 9060, 11505, 12705, 13020, 15885, 16650, 20055, 20745, 22530, 24915, 26940, 29670, 32925, 35070, 36885, 39270, 44370, 47730, 48465, 54735, 55860, 56310, 58860, 65655, 66600, 67365, 67650
Offset: 1
-
Select[Range[68000], And @@ PrimeQ /@ ({2, 4, 6, 8}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
-
is(k) = sum(j = 1, 4, isprime(2*j*k+1)) == 4; \\ Jinyuan Wang, Aug 04 2019
A124410
Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1 and 10k+1 are primes.
Original entry on oeis.org
5415, 12705, 13020, 44370, 82950, 98280, 105525, 112200, 115140, 123855, 134250, 134460, 187740, 188745, 210165, 225705, 247170, 256410, 296310, 302085, 367875, 375645, 382890, 399585, 404040, 476340, 487830, 526845, 532095, 566430, 578085
Offset: 1
-
Select[Range[600000], And @@ PrimeQ /@ ({2, 4, 6, 8, 10}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
-
is(k) = sum(j = 1, 5, isprime(2*j*k+1)) == 5; \\ Jinyuan Wang, Aug 04 2019
A124411
Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1, 10k+1 and 12k+1 are primes.
Original entry on oeis.org
12705, 13020, 105525, 256410, 966840, 1707510, 1944495, 2310000, 2478630, 3132675, 3836070, 3976770, 4112430, 4532325, 5499585, 5920005, 6610485, 7390845, 8552250, 10739505, 11120340, 12231450, 12338130, 13243230, 16467255
Offset: 1
Cf.
A005097,
A005098,
A024899,
A005123,
A024912,
A110801,
A123998,
A124408,
A124409,
A124410,
A071576.
-
Select[Range[10^7], And @@ PrimeQ /@ ({2, 4, 6, 8, 10, 12}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
-
is(k) = sum(j = 1, 6, isprime(2*j*k+1)) == 6; \\ Jinyuan Wang, Aug 04 2019
A153762
Numbers k such that 8k + 9 is prime.
Original entry on oeis.org
1, 4, 8, 10, 11, 13, 16, 23, 28, 29, 31, 34, 38, 41, 43, 49, 50, 53, 55, 56, 64, 70, 71, 73, 74, 76, 79, 83, 94, 95, 100, 106, 109, 115, 116, 118, 121, 125, 128, 130, 136, 140, 143, 148, 149, 151, 155, 160, 161, 164, 169, 175, 178, 184, 185, 193, 199, 200, 206, 211
Offset: 1
A254936
Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A007519(n), n >= 1 (primes congruent to 1 mod 8).
Original entry on oeis.org
9, 11, 13, 19, 25, 15, 21, 23, 35, 41, 25, 21, 37, 49, 23, 39, 29, 25, 57, 35, 27, 59, 65, 33, 43, 29, 49, 55, 51, 41, 37, 69, 81, 39, 59, 35, 65, 71, 77, 83, 51, 67, 47, 43, 79, 39, 97, 69, 49, 59, 41, 87, 93, 61, 47, 57, 89, 53, 101, 79, 59, 85, 55, 91, 103, 81, 115, 53, 49, 63, 83, 73, 111, 59
Offset: 1
The first pairs [x2(n), y2(n)] of the fundamental positive solutions of this second class are (the prime A007519(n) appears as first entry):
[17, [9, 7]], [41, [11, 9]], [73, [13, 11]],
[89, [19, 15]], [97, [25, 19]], [113, [15, 13]],
[137, [21, 17]], [193, [23, 19]], [233, [35, 27]],
[241, [41, 31]], [257, [25, 21]], [281, [21, 19]],
[313, [37, 29]], [337, [49, 37]], [353, [23, 21]],
[401, [39, 31]], [409, [29, 25]], [433, [25, 23]],
[449, [57, 43]], [457, [35, 29]], [521, [27, 25]],
[569, [59, 45]], [577, [65, 49]], [593, [33, 29]],
[601, [43, 35]], [617, [29, 27]], [641, [49, 39]], ...
a(4) = -(3*3 - 4*7) = 28 - 9 = 19.
-
apply( {A254936(n, p=A007519(n))=n=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1]*[-3,4]~}, [1..77]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025
Original entry on oeis.org
1, 3, 7, 9, 13, 15, 25, 27, 37, 39, 43, 45, 49, 57, 67, 69, 73, 79, 87, 93, 97, 99, 105, 115, 127, 135, 139, 153, 163, 165, 169, 175, 177, 183, 189, 193, 199, 205, 207, 213, 219, 235, 249, 253, 255, 265, 267, 273, 277, 279, 295, 303, 307
Offset: 1
The minimal polynomial C(A007521(2), x) = C(13, x) has degree 6 = 2*a(2) because C(13, x) = x^6 - x^5 - 5*x^4 + 4*x^3 + 6*x^2 - 3*x -1.
A023347
Primes which remain prime through 5 iterations of function f(x) = 8x + 1.
Original entry on oeis.org
831167, 1154567, 2502767, 3019787, 3675197, 5056577, 6352487, 14519177, 26724377, 43003577, 47378927, 47695607, 56406197, 86332457, 86611757, 99568757, 121967987, 126435527, 127990997, 128149127, 128975057, 145281557, 155715407
Offset: 1
First chain is {831167, 6649337, 53194697, 425557577, 3404460617, 27235684937};
If p is congruent to {1,3,7,9} mod 10, then consecutive iterates are congruent to {9,5,7,3}, {3,1,7,5}, {5,9,7,1} respectively; so only 10k+7 may remain prime through five iterations, as sequence demonstrates nicely. - _Labos Elemer_, Jul 23 2003
-
k=0; m=8; Do[s=Prime[n]; s1=m*s+1; s2=m*s1+1; s3=m*s2+1; s4=m*s3+1; s5=m*s4+1; If[PrimeQ[s]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5], k=k+1; Print[s]], {n, 1, 1000000}]
it5Q[n_]:=AllTrue[Rest[NestList[8#+1&,n,5]],PrimeQ]; Select[Prime[Range[ 9*10^6]],it5Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 12 2014 *)
A023291
Primes that remain prime through 3 iterations of function f(x) = 8x + 1.
Original entry on oeis.org
2, 1487, 2207, 2927, 8807, 11117, 16187, 17657, 26357, 44927, 45377, 48497, 91757, 110237, 117167, 122327, 125387, 126107, 145007, 170927, 174527, 190787, 193847, 203897, 230567, 244247, 246017, 270287, 280547, 283937, 347957, 362237, 364337
Offset: 1
-
[n: n in [1..450000] | IsPrime(n) and IsPrime(8*n+1) and IsPrime(64*n+9) and IsPrime(512*n+73)]; // Vincenzo Librandi, Aug 04 2010
-
okQ[n_]:=And@@PrimeQ[NestList[8#+1&,n,3]]; Select[Prime[Range[50000]],okQ] (* Harvey P. Dale, Jan 09 2011 *)
A115248
Values such that A115247(a(n))=1. Values such that A001935(a(n))==2 (mod 4).
Original entry on oeis.org
2, 5, 9, 11, 12, 14, 17, 19, 24, 29, 30, 32, 35, 39, 42, 44, 46, 50, 51, 53, 54, 56, 57, 65, 71, 72, 74, 75, 77, 80, 82, 84, 95, 96, 100, 101, 104, 107, 109, 110, 116, 117, 119, 122, 126, 127, 128, 129, 131, 137, 141, 144, 149, 150, 152, 154, 156, 161, 162, 165, 170
Offset: 0
Original entry on oeis.org
8, 20, 36, 44, 48, 56, 68, 96, 116, 120, 128, 140, 156, 168, 176, 200, 204, 216, 224, 228, 260, 284, 288, 296, 300, 308, 320, 336, 380, 384, 404, 428, 440, 464, 468, 476, 488, 504, 516, 524, 548, 564, 576, 596, 600, 608
Offset: 1
Comments