cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A103515 Primes of the form primorial P(k)*2^n-1 with minimal n, n>=0, k>=2.

Original entry on oeis.org

5, 29, 419, 2309, 30029, 1021019, 19399379, 892371479, 51757545839, 821495767572479, 14841476269619, 304250263527209, 54873078184468933509119, 2459559130353965639, 521426535635040715679, 15751252788463309939261439
Offset: 1

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Comments

Conjecture: sequence is defined for all k>=2

Examples

			P(2)*2^0-1=3*2-1=5 is prime, so a(2)=5;
P(4)*2^1-1=7*5*3*2*2-1=419 is prime, so a(4)=419;
		

Crossrefs

Programs

  • Mathematica
    nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tt = 1; cp = npd*tt - 1; While[ ! (PrimeQ[cp]), tt = tt*2; cp = npd*tt - 1]; Print[cp]; n = n + 1; npd = npd*Prime[n]]

A103782 a(n) = minimal m >= 0 that makes primorial P(n)*2^m-1 prime.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 2, 3, 12, 1, 0, 22, 2, 4, 13, 12, 6, 1, 4, 1, 4, 0, 2, 9, 5, 6, 2, 1, 9, 17, 22, 7, 19, 73, 23, 12, 5, 27, 33, 64, 33, 5, 7, 41, 44, 35, 29, 3, 19, 6, 26, 5, 11, 9, 33, 34, 16, 63, 46, 8, 4, 24, 48, 0, 11, 0, 26, 6, 25, 17, 31, 6, 46, 33, 46, 17, 8, 61, 12, 23, 76, 20, 17
Offset: 2

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Comments

The values of n in A103515

Examples

			P(2)*2^0-1=5 is prime, so a(2)=0; P(9)*2^2-1=892371479 is prime, so a(9)=2;
		

Crossrefs

Programs

  • Mathematica
    nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tn = 0; tt = 1; cp = npd*tt - 1; While[(cp > 1) && (! (PrimeQ[cp])), tn = tn + 1; tt = tt*2; cp = npd*tt - 1]; Print[tn]; n = n + 1; npd = npd*Prime[n]]

A104876 Semiprimes of the form primorial(k) - 1.

Original entry on oeis.org

209, 510509, 6469693229, 200560490129, 13082761331670029, 1922760350154212639069, 557940830126698960967415389, 40729680599249024150621323469, 2305567963945518424753102147331756069, 232862364358497360900063316880507363069
Offset: 1

Views

Author

Jonathan Vos Post, Mar 28 2005

Keywords

Examples

			4# - 1 = 209 = 11 * 19.
7# - 1 = 510509 = 61 * 8369.
10# - 1 = 6469693229 = 79 * 81894851.
		

Crossrefs

Programs

  • Mathematica
    Bigomega[n_]:=Plus@@Last/@FactorInteger[n]; SemiprimeQ[n_]:=Bigomega[n]==2; Primorial[n_]:=Product[Prime[i], {i, n}]; Select[Table[Primorial[n]-1, {n, 30}], SemiprimeQ] (* Ray Chandler, Mar 28 2005 *)

Formula

n# - 1 iff semiprime. Equals {A002110(i) - 1} intersection {A001358(j)}.

Extensions

Entry revised by N. J. A. Sloane, Apr 01 2006

A250293 Primes p such that p#+1 is a semiprime, where # is the primorial (A034386).

Original entry on oeis.org

13, 19, 23, 43, 61, 67, 73, 83, 101, 139, 151, 173, 223, 251, 383, 457, 571, 673, 761
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

The next candidate after 571 is 859. 859# + 1 is a 359-digit composite with no known factors. - Hugo Pfoertner, Feb 05 2021

Examples

			a(1) = 13 so 13# + 1 = 30031 = 59 * 509 is a semiprime.
		

Crossrefs

Programs

Formula

a(n) = prime(A085725(n)). - Hugo Pfoertner, Feb 05 2021

Extensions

a(16)-a(18) using factordb.com from Hugo Pfoertner, Feb 05 2021
Missing 571 inserted by Sean A. Irvine, Mar 03 2023

A103513 Primes of the form primorial(P(k))/2-2^n with minimal n, n>=0, k>=2.

Original entry on oeis.org

2, 13, 103, 1153, 15013, 255253, 4849843, 111546433, 3234846607, 100280245063, 3710369067401, 152125131763603, 6541380632280583, 307444891294245701, 16294579238595022363, 961380175077106319471, 58644190679703485491571
Offset: 1

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Comments

The Mathematica Program does not produce a(2). Conjecture: sequence is defined for all k>=2.

Examples

			P(2)/2=3, 3-2^0=2 is prime, so a(2)=2;
P(5)/2=1155, 1155-2^1=1153 is prime, so a(5)=1153;
		

Crossrefs

Programs

  • Mathematica
    nmax = 2^8192; npd = 1; n = 2; npd = npd*Prime[n]; While[npd < nmax, tt = 2; cp = npd - tt; While[(cp > 1) && (! (PrimeQ[cp])), tt = tt*2; cp = npd - tt]; If[cp < 2, Print["*"], Print[cp]]; n = n + 1; npd = npd*Prime[n]]

A104877 Semiprimes of the form primorial(k) + 1.

Original entry on oeis.org

30031, 9699691, 223092871, 13082761331670031, 117288381359406970983271, 7858321551080267055879091, 40729680599249024150621323471, 267064515689275851355624017992791
Offset: 1

Views

Author

Jonathan Vos Post, Mar 28 2005

Keywords

Examples

			6# + 1 = 2*3*5*7*11*13 + 1 = 30031 = 59 x 509.
8# + 1 = 2*3*5*7*11*13*17*19 + 1 = 9699691 = 347 x 27953.
9# + 1 = 2*3*5*7*11*13*17*19*23 + 1 = 223092871 = 317 x 703763.
14# + 1 = 2*3*5*7*11*13*17*19*23*29*31*37*41*43 + 1 = 13082761331670031 = 167 x 78339888213593.
		

Crossrefs

Programs

  • Mathematica
    Bigomega[n_]:=Plus@@Last/@FactorInteger[n]; SemiprimeQ[n_]:=Bigomega[n]==2; Primorial[n_]:=Product[Prime[i], {i, n}]; Select[Table[Primorial[n]+1, {n, 30}], SemiprimeQ] (* Ray Chandler, Mar 28 2005 *)
    Select[FoldList[Times,Prime[Range[30]]]+1,PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 13 2022 *)

Formula

n# + 1 iff semiprime. Equals {A002110(i) + 1} intersection {A001358(j)}.

A114432 Primes of the form 1 + product of the first k 4-almost primes A014613.

Original entry on oeis.org

17, 8126654054401
Offset: 1

Views

Author

Jonathan Vos Post, Feb 13 2006

Keywords

Comments

The next term is too large to display here. - N. J. A. Sloane, Jul 30 2009
4-almost prime analog of primorial primes A005234 as indexed by A014545. In that sense, this sequence is indexed by (1, 8, ...). No more through product of first 16 of the 4-almost primes.
Terms are one more than the products of 4-almost primes up to 16, 81, 294, 513, 825, 1356, 1612, 2004, 2756, 7714, ... - Charles R Greathouse IV, Jul 28 2009

Examples

			a(1) = 17 because 1 + 16 = 1 + A014613(1) = 1 more than the first 4-almost prime is itself prime.
a(2) = 8126654054401 = 1 + (16 * 24 * 36 * 40 * 54 * 56 * 60 * 81) = 1 more than the product of the first 8 of the 4-almost primes and is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[FoldList[Times, Select[Range[200], PrimeOmega[#] == 4 &]] + 1, PrimeQ] (* Amiram Eldar, Jul 20 2025 *)

Formula

{1 + Product_{i=1..k} A014613(i)} INTERSECTION A000040.

A248584 Decimal expansion of the value of the continued fraction constructed from prime primorials plus 1.

Original entry on oeis.org

3, 1, 8, 2, 4, 8, 1, 6, 5, 0, 8, 3, 6, 9, 0, 1, 2, 4, 7, 7, 7, 6, 8, 5, 5, 8, 9, 9, 9, 6, 7, 8, 7, 8, 4, 4, 7, 8, 8, 6, 5, 7, 1, 2, 2, 3, 3, 1, 5, 3, 3, 0, 4, 9, 4, 6, 7, 0, 9, 4, 7, 9, 6, 9, 6, 0, 9, 0, 4, 3, 2, 9, 3, 5, 8, 3, 3, 3, 5, 0, 4, 6, 3, 7, 7, 9, 5, 0, 0, 6, 1, 9, 8, 8, 2, 5, 6, 0, 1, 7, 3, 9
Offset: 0

Views

Author

Jean-François Alcover, Oct 09 2014

Keywords

Examples

			0.318248165083690124777685589996787844788657122331533049467...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[FromContinuedFraction[{0, 3, 7, 31, 211, 2311, 200560490131}], 102]] // First

A248585 Decimal expansion of the value of the continued fraction constructed from prime primorials minus 1.

Original entry on oeis.org

1, 9, 8, 6, 3, 0, 1, 5, 7, 3, 0, 3, 5, 0, 3, 8, 1, 0, 8, 7, 5, 2, 0, 1, 2, 3, 3, 6, 1, 4, 3, 4, 6, 8, 6, 2, 8, 7, 5, 8, 7, 0, 6, 3, 0, 8, 9, 8, 4, 7, 9, 7, 7, 7, 6, 2, 5, 6, 4, 7, 0, 2, 4, 9, 8, 4, 2, 3, 5, 5, 4, 1, 1, 5, 1, 3, 0, 8, 4, 4, 2, 6, 1, 9, 0, 9, 2, 3, 1, 4, 7, 3, 7, 3, 6, 3, 3, 9, 3, 1, 2, 8
Offset: 0

Views

Author

Jean-François Alcover, Oct 09 2014

Keywords

Examples

			0.198630157303503810875201233614346862875870630898479777625647...
		

Crossrefs

Programs

  • Mathematica
    cf = {0, 5, 29, 2309, 30029, 304250263527209, 23768741896345550770650537601358309}; RealDigits[N[FromContinuedFraction[cf], 102]] // First

A114428 Primes of the form 1 + product of the first n semiprimes.

Original entry on oeis.org

5, 2161, 30241, 453601, 4495130640001, 152834441760001, 911300420785759804800001, 19660095637340203930960075575675174251117567173124497920000000001
Offset: 1

Views

Author

Jonathan Vos Post, Feb 13 2006

Keywords

Comments

Semiprime analog of primorial primes A005234 (primes p such that 1 + product of primes up to p is prime) as indexed by A014545 (n such that n-th Euclid number (A006862(n)) = 1 + (Product of first n primes) is prime). In that sense, this sequence is indexed by (1, 4, 5, 6, 11, 12, 39, ...).
The next term has 90 digits. - Harvey P. Dale, Sep 21 2011

Examples

			a(1) = 5 = 4 + 1 = 1 + A001358(1) = 1 + A112141(1) because 4 is the first semiprime and 5 is prime.
a(2) = 2161 because 2160 + 1 = 1 + A001358(1)*A001358(2)*A001358(3)*A001358(4) = 1 + A112141(4) = 1 + (4*6*9*10) is prime.
a(3) = 1 + A112141(5).
a(4) = 1 + A112141(6).
a(5) = 1 + A112141(11).
a(6) = 1 + A112141(12).
a(7) = (4 * 6 * 9 * 10 * 14 * 15 * 21 * 22 * 25 * 26 * 33 * 34 * 35 * 38 * 39 * 46 * 49 * 51 * 55 * 57 * 58 * 62 * 65 * 69 * 74 * 77 * 82 * 85 * 86 * 87 * 91 * 93 * 94* 95 * 106 * 111 * 115 * 118 * 119) + 1 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[#+1&/@FoldList[Times,1,Select[Range[200],PrimeOmega[#] == 2&]], PrimeQ] (* Harvey P. Dale, Sep 21 2011 *)

Formula

{a(n)} = {1 + A112141} INTERSECTION {A000040}.

Extensions

a(7) added by Jonathan Vos Post, Dec 12 2010
Previous Showing 11-20 of 22 results. Next