cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A259971 Triangle read by rows: coefficients xi(n,k) arising from the study of completely transitive graphs on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 3, 10, 40, 51, 21, 122, 644, 1236, 1029, 315, 3346, 21496, 54060, 66780, 40635, 9765, 196082, 1471460, 4527228, 7328580, 6596100, 3134565, 615195
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2015

Keywords

Examples

			Triangle begins:
1,
1,1,
2,5,3,
10,40,51,21,
122,644,1236,1029,315,
3346,21496,54060,66780,40635,9765,
196082,1471460,4527228,7328580,6596100,3134565,615195,
...
		

Crossrefs

Diagonals include A005321, A005330
Row sums are also A005321.

A369415 Number A(n,k) of n X n Fishburn matrices with entries in the set {0,1,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 12, 10, 0, 1, 4, 36, 264, 122, 0, 1, 5, 80, 2052, 19632, 3346, 0, 1, 6, 150, 9280, 505764, 4606752, 196082, 0, 1, 7, 252, 30750, 5684480, 511718148, 3311447232, 23869210, 0, 1, 8, 392, 83160, 39378750, 17672135680, 2088275673636, 7202118117504, 5939193962, 0
Offset: 0

Views

Author

Alois P. Heinz, Jan 22 2024

Keywords

Comments

Number of upper triangular n X n {0,1,...,k}-matrices with no zero rows or columns.

Examples

			A(2,3) = 3*3*4 = 36:
  [10] [10] [10]  [20] [20] [20]  [30] [30] [30]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
  [11] [11] [11]  [21] [21] [21]  [31] [31] [31]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
  [12] [12] [12]  [22] [22] [22]  [32] [32] [32]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
  [13] [13] [13]  [23] [23] [23]  [33] [33] [33]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
Square array A(n,k) begins:
  1,    1,       1,         1,           1,            1, ...
  0,    1,       2,         3,           4,            5, ...
  0,    2,      12,        36,          80,          150, ...
  0,   10,     264,      2052,        9280,        30750, ...
  0,  122,   19632,    505764,     5684480,     39378750, ...
  0, 3346, 4606752, 511718148, 17672135680, 305416893750, ...
  ...
		

Crossrefs

Columns k=0-3 give: A000007, A005321, A289314, A289315.
Rows n=0-3 give: A000012, A001477, A011379, A369423.
Main diagonal gives A369336.

Programs

  • Maple
    A:= (n, k)-> coeff(series(add(x^j*mul(((k+1)^i-1)/(1+x*
               ((k+1)^i-1)), i=1..j), j=0..n), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

A(n,k) = [x^n] Sum_{j=0..n} x^j * Product_{i=1..j} ((k+1)^i-1)/(1+x*((k+1)^i-1)).

A369336 Number of n X n Fishburn matrices with entries in the set {0,1,...,n}.

Original entry on oeis.org

1, 1, 12, 2052, 5684480, 305416893750, 391129148721673152, 14286237711414132094989064, 17309880507327972883933887341789184, 792117985317303404452447777723478865406570410, 1534214120588806182890487155420702132205591283310000000000
Offset: 0

Views

Author

Alois P. Heinz, Jan 20 2024

Keywords

Comments

Number of upper triangular n X n {0,1,...,n}-matrices with no zero rows or columns.

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 12:
  [10] [10] [20] [20]  [11] [11] [21] [21]  [12] [12] [22] [22]
  [ 1] [ 2] [ 1] [ 2]  [ 1] [ 2] [ 1] [ 2]  [ 1] [ 2] [ 1] [ 2].
		

Crossrefs

Main diagonal of A369415.

Programs

  • Maple
    a:= n-> coeff(series(add(x^j*mul(((n+1)^i-1)/(1+x*
        ((n+1)^i-1)), i=1..j), j=0..n), x, n+1), x, n):
    seq(a(n), n=0..10);

Formula

a(n) = [x^n] Sum_{j=0..n} x^j * Product_{i=1..j} ((n+1)^i-1)/(1+x*((n+1)^i-1)).

A005016 Certain subgraphs of a directed graph.

Original entry on oeis.org

1, 1, 3, 15, 159, 3903, 214143, 25098495, 6110517759, 3040867308543, 3064498377754623, 6220489664197758975, 25354161321592779612159, 207142125428402158677213183, 3388838467537660347660899221503
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005321.

Formula

G.f.: Sum(x^n*Product((2^i-1)/(1+(2^i-2)*x),i = 1 .. n),n = 0 .. infinity). - Vladeta Jovovic, Mar 10 2008

Extensions

More terms from Vladeta Jovovic, Mar 10 2008
a(0), a(14) from Max Alekseyev, May 04 2010

A072925 Probably an erroneous version of A002845.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 36, 78, 171, 379, 888, 1944
Offset: 1

Views

Author

Keywords

Comments

The old entry with this sequence number was a duplicate of A037444.

References

  • J. Q. Longyear, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995; entry M1139.

A259876 Triangle of numbers S(n,k) (0 <= k <= n) arising in the enumeration of interval orders without duplicated holdings.

Original entry on oeis.org

1, 1, -1, 3, -3, 1, 21, -21, 7, -1, 315, -315, 105, -15, 1, 9765, -9765, 3255, -465, 31, -1, 615195, -615195, 205065, -29295, 1953, -63, 1, 78129765, -78129765, 26043255, -3720465, 248031, -8001, 127, -1, 19923090075, -19923090075, 6641030025, -948718575, 63247905, -2040255, 32385, -255, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2015

Keywords

Examples

			Triangle begins:
     1;
     1,    -1;
     3,    -3,    1;
    21,   -21,    7,   -1;
   315,  -315,  105,  -15,  1;
  9765, -9765, 3255, -465, 31, -1;
  ...
		

References

  • T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.

Crossrefs

Row sums give A005327.
Column k=0 gives A005329.
Main diagonal gives A033999.
T(n+1,n) gives A225883(n+1).

Formula

T(n,k) = qfactorial(n)/qfactorial(k)*(-1)^(k), n>=k, where qfactorial(n) is A005329. - Vladimir Kruchinin, Feb 17 2020

Extensions

More terms from Alois P. Heinz, Feb 17 2020

A318301 Triangle T(n, k) read by rows: T(0, 0) = 1 and T(n, k) = Sum_{i=0..k-1} T(n, i) + Sum_{i=k..n-1} T(n-1, i).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 10, 18, 33, 61, 122, 234, 450, 867, 1673, 3346, 6570, 12906, 25362, 49857, 98041, 196082, 388818, 771066, 1529226, 3033090, 6016323, 11934605, 23869210, 47542338, 94695858, 188620650, 275712074, 748391058, 1490765793, 2969596981, 5939193962, 11854518714
Offset: 0

Views

Author

Nicolas Nagel, Aug 24 2018

Keywords

Comments

The left edge of the triangle appears to be A005321.

Examples

			Triangle begins:
     1
     1    1
     2    3     5
    10   18    33    61
   122  234   450   867  1673
  3346 6570 12906 25362 49857 98041
  ...
T(5, 2) = (3346 + 6570) + (450 + 867 + 1673) = 12906;
T(5, 2) = 2 * 6570 - 234 = 12906.
		

Crossrefs

Cf. A005321.

Programs

  • PARI
    T(n, k) = if (k == 0, if (n <= 1, 1, 2 * T(n-1, n-1)), 2 * T(n, k-1) - T(n-1, k-1));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Aug 25 2018
  • Python
    def T(n, k):
        if k == 0:
            if n == 0 or n == 1:
                return 1
            return 2 * T(n-1, n-1)
        return 2 * T(n, k-1) - T(n-1, k-1)
    

Formula

An equivalent recursion: T(0, 0) = T(1, 0) = 1, T(n, 0) = 2*T(n-1, n-1) if n>=2, T(n, k) = 2*T(n, k-1) - T(n-1, k-1) if n>=k>=1.
Previous Showing 11-17 of 17 results.