A259971
Triangle read by rows: coefficients xi(n,k) arising from the study of completely transitive graphs on n nodes.
Original entry on oeis.org
1, 1, 1, 2, 5, 3, 10, 40, 51, 21, 122, 644, 1236, 1029, 315, 3346, 21496, 54060, 66780, 40635, 9765, 196082, 1471460, 4527228, 7328580, 6596100, 3134565, 615195
Offset: 1
Triangle begins:
1,
1,1,
2,5,3,
10,40,51,21,
122,644,1236,1029,315,
3346,21496,54060,66780,40635,9765,
196082,1471460,4527228,7328580,6596100,3134565,615195,
...
- E. Andresen, K. Kjeldsen, On certain subgraphs of a complete transitively directed graph, Discrete Math. 14 (1976), no. 2, 103-119.
- Hsien-Kuei Hwang, Emma Yu Jin, Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], Dec 25 2020, p. 29.
A369415
Number A(n,k) of n X n Fishburn matrices with entries in the set {0,1,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 12, 10, 0, 1, 4, 36, 264, 122, 0, 1, 5, 80, 2052, 19632, 3346, 0, 1, 6, 150, 9280, 505764, 4606752, 196082, 0, 1, 7, 252, 30750, 5684480, 511718148, 3311447232, 23869210, 0, 1, 8, 392, 83160, 39378750, 17672135680, 2088275673636, 7202118117504, 5939193962, 0
Offset: 0
A(2,3) = 3*3*4 = 36:
[10] [10] [10] [20] [20] [20] [30] [30] [30]
[ 1] [ 2] [ 3] [ 1] [ 2] [ 3] [ 1] [ 2] [ 3]
.
[11] [11] [11] [21] [21] [21] [31] [31] [31]
[ 1] [ 2] [ 3] [ 1] [ 2] [ 3] [ 1] [ 2] [ 3]
.
[12] [12] [12] [22] [22] [22] [32] [32] [32]
[ 1] [ 2] [ 3] [ 1] [ 2] [ 3] [ 1] [ 2] [ 3]
.
[13] [13] [13] [23] [23] [23] [33] [33] [33]
[ 1] [ 2] [ 3] [ 1] [ 2] [ 3] [ 1] [ 2] [ 3]
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 12, 36, 80, 150, ...
0, 10, 264, 2052, 9280, 30750, ...
0, 122, 19632, 505764, 5684480, 39378750, ...
0, 3346, 4606752, 511718148, 17672135680, 305416893750, ...
...
- Alois P. Heinz, Antidiagonals n = 0..53, flattened
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614; arXiv preprint, arXiv:1106.2261 [math.CO], 2011.
- Wikipedia, Peter C. Fishburn
-
A:= (n, k)-> coeff(series(add(x^j*mul(((k+1)^i-1)/(1+x*
((k+1)^i-1)), i=1..j), j=0..n), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..10);
A369336
Number of n X n Fishburn matrices with entries in the set {0,1,...,n}.
Original entry on oeis.org
1, 1, 12, 2052, 5684480, 305416893750, 391129148721673152, 14286237711414132094989064, 17309880507327972883933887341789184, 792117985317303404452447777723478865406570410, 1534214120588806182890487155420702132205591283310000000000
Offset: 0
a(0) = 1: [].
a(1) = 1: [1].
a(2) = 12:
[10] [10] [20] [20] [11] [11] [21] [21] [12] [12] [22] [22]
[ 1] [ 2] [ 1] [ 2] [ 1] [ 2] [ 1] [ 2] [ 1] [ 2] [ 1] [ 2].
- Alois P. Heinz, Table of n, a(n) for n = 0..35
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614; arXiv preprint, arXiv:1106.2261 [math.CO], 2011.
- Wikipedia, Peter C. Fishburn
-
a:= n-> coeff(series(add(x^j*mul(((n+1)^i-1)/(1+x*
((n+1)^i-1)), i=1..j), j=0..n), x, n+1), x, n):
seq(a(n), n=0..10);
A005016
Certain subgraphs of a directed graph.
Original entry on oeis.org
1, 1, 3, 15, 159, 3903, 214143, 25098495, 6110517759, 3040867308543, 3064498377754623, 6220489664197758975, 25354161321592779612159, 207142125428402158677213183, 3388838467537660347660899221503
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- E. Andresen and K. Kjeldsen, On certain subgraphs of a complete transitively directed graph, Discrete Math. 14 (1976), no. 2, 103-119.
- William T. Dugan, On the f-vectors of flow polytopes for the complete graph, Sém. Lotharingien Comb., Proc. 36th Conf. Formal Power Series Alg. Comb. (2024) Vol. 91B, Art. No. 101. See p. 3.
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
A072925
Probably an erroneous version of A002845.
Original entry on oeis.org
1, 1, 1, 2, 4, 8, 17, 36, 78, 171, 379, 888, 1944
Offset: 1
- J. Q. Longyear, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995; entry M1139.
- F. Goebel and R. P. Nederpelt, The number of numerical outcomes of iterated powers, Amer. Math. Monthly, 80 (1971), 1097-1103.
- R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
- J. Longyear, T. Trotter, N. J. A. Sloane, Correspondence
A259876
Triangle of numbers S(n,k) (0 <= k <= n) arising in the enumeration of interval orders without duplicated holdings.
Original entry on oeis.org
1, 1, -1, 3, -3, 1, 21, -21, 7, -1, 315, -315, 105, -15, 1, 9765, -9765, 3255, -465, 31, -1, 615195, -615195, 205065, -29295, 1953, -63, 1, 78129765, -78129765, 26043255, -3720465, 248031, -8001, 127, -1, 19923090075, -19923090075, 6641030025, -948718575, 63247905, -2040255, 32385, -255, 1
Offset: 0
Triangle begins:
1;
1, -1;
3, -3, 1;
21, -21, 7, -1;
315, -315, 105, -15, 1;
9765, -9765, 3255, -465, 31, -1;
...
- T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
A318301
Triangle T(n, k) read by rows: T(0, 0) = 1 and T(n, k) = Sum_{i=0..k-1} T(n, i) + Sum_{i=k..n-1} T(n-1, i).
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 10, 18, 33, 61, 122, 234, 450, 867, 1673, 3346, 6570, 12906, 25362, 49857, 98041, 196082, 388818, 771066, 1529226, 3033090, 6016323, 11934605, 23869210, 47542338, 94695858, 188620650, 275712074, 748391058, 1490765793, 2969596981, 5939193962, 11854518714
Offset: 0
Triangle begins:
1
1 1
2 3 5
10 18 33 61
122 234 450 867 1673
3346 6570 12906 25362 49857 98041
...
T(5, 2) = (3346 + 6570) + (450 + 867 + 1673) = 12906;
T(5, 2) = 2 * 6570 - 234 = 12906.
-
T(n, k) = if (k == 0, if (n <= 1, 1, 2 * T(n-1, n-1)), 2 * T(n, k-1) - T(n-1, k-1));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Aug 25 2018
-
def T(n, k):
if k == 0:
if n == 0 or n == 1:
return 1
return 2 * T(n-1, n-1)
return 2 * T(n, k-1) - T(n-1, k-1)
Comments