cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A382339 Triangle read by rows: T(n,k) is the number of partitions of a 2-colored set of n objects into exactly k parts with 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 4, 6, 4, 0, 5, 14, 9, 5, 0, 6, 22, 24, 12, 6, 0, 7, 37, 49, 34, 15, 7, 0, 8, 52, 92, 76, 44, 18, 8, 0, 9, 76, 157, 162, 103, 54, 21, 9, 0, 10, 100, 260, 302, 232, 130, 64, 24, 10, 0, 11, 135, 400, 554, 468, 302, 157, 74, 27, 11
Offset: 0

Views

Author

Peter Dolland, Mar 22 2025

Keywords

Examples

			Triangle begins:
 0 : [1]
 1 : [0,  2]
 2 : [0,  3,   3]
 3 : [0,  4,   6,   4]
 4 : [0,  5,  14,   9,   5]
 5 : [0,  6,  22,  24,  12,   6]
 6 : [0,  7,  37,  49,  34,  15,   7]
 7 : [0,  8,  52,  92,  76,  44,  18,   8]
 8 : [0,  9,  76, 157, 162, 103,  54,  21,  9]
 9 : [0, 10, 100, 260, 302, 232, 130,  64, 24, 10]
10 : [0, 11, 135, 400, 554, 468, 302, 157, 74, 27, 11]
...
		

Crossrefs

Row sums are A005380.
The 1-color case is A008284.
Cf. A381891.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (n+1)*x^n,
          add(b(n-i*j, min(n-i*j, i-1))*binomial(i+j, j)*x^j, j=0..n/i)))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 22 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, (n + 1)*x^n, Sum[b[n - i*j, Min[n - i*j, i - 1]]*Binomial[i + j, j]*x^j, {j, 0, n/i}]]];
    T[n_, k_] := Coefficient[b[n, n], x, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 17 2025, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    def t_row( n):
        if n == 0 : return [1]
        t = list( [0] * n)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( k + p[k], p[k])
            if s > 0 :
                t[s - 1] += fact
        return [0] + t

Formula

T(n,1) = n + 1 for n >= 1.
T(n,n) = n + 1.
T(n,k) = A381891(n,k) - A381891(n,k-1) for k >= 1.

A353065 Euler transform of odd primes.

Original entry on oeis.org

1, 3, 11, 32, 92, 239, 608, 1465, 3450, 7858, 17525, 38165, 81653, 171497, 354785, 723084, 1454642, 2889854, 5676607, 11031046, 21224439, 40453596, 76428636, 143192339, 266172016, 491072611, 899583306, 1636775949, 2958900040, 5316004485, 9494514599
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 21 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          d*ithprime(d+1), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 21 2022
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 - x^k)^Prime[k + 1], {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[d Prime[d + 1], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} 1 / (1 - x^k)^prime(k+1).

A060285 Number of partitions of n objects of 2 colors with parts size >1.

Original entry on oeis.org

1, 0, 3, 4, 11, 18, 42, 70, 144, 248, 466, 802, 1442, 2444, 4247, 7116, 12030, 19878, 32938, 53670, 87429, 140680, 225815, 359100, 569157, 895224, 1402941, 2184662, 3388915, 5228458, 8035921, 12291710, 18732318, 28425342, 42981877, 64740330
Offset: 0

Views

Author

Vladeta Jovovic, Mar 23 2001

Keywords

Crossrefs

Cf. (row sums of) A060244, A054225, A005380.

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(k+1),{k,2,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 04 2015 *)

Formula

Euler transform of sequence [0, 3, 4, 5, 6, ...].
G.f.: Product_{k=2..infinity} 1/(1-x^k)^(k+1).
From Vaclav Kotesovec, Mar 09 2015: (Start)
For n>=2, a(n) = A005380(n-2) - 2*A005380(n-1) + A005380(n).
a(n) ~ 2^(1/36) * Zeta(3)^(37/36) * exp(1/12 - Pi^4/(432*Zeta(3)) + Pi^2 * n^(1/3) / (3*2^(4/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 3^(1/2) * Pi * n^(55/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
a(n) ~ (2*Zeta(3))^(2/3) * A005380(n) / n^(2/3).
(End)

Extensions

Edited by Christian G. Bower, Jan 08 2004

A217194 Number of unlabeled simple graphs with n nodes of 2 colors whose components are path graphs.

Original entry on oeis.org

1, 2, 6, 16, 42, 106, 267, 656, 1602, 3868, 9270, 22048, 52140, 122580, 286798, 667944, 1549259, 3579738, 8242638, 18917600, 43286909, 98768820, 224768425, 510235760, 1155553468, 2611251662, 5888421059, 13252176464, 29768501556, 66749440076, 149415504274
Offset: 0

Views

Author

Geoffrey Critzer, Sep 27 2012

Keywords

Comments

Here, a path graph is a connected graph with no cycles such that each node has degree at most two.

Examples

			a(3) = 16 because we have:
w w w; w w b; w b b; b b b;
w w-w; w w-b; w b-b; b w-w; b w-b; b b-b;
w-w-w; w-w-b; w-b-w; b-w-b; b-b-w; b-b-b, where the 2 colors are black b and white w.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*(2^(d-1)+
          2^(floor((d+1)/2)-1)), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 27 2012
  • Mathematica
    nn=30;p=Product[1/(1- x^i)^(2^(i-1)+2^(Floor[(i+1)/2]-1)),{i,1,nn}];CoefficientList[Series[p,{x,0,nn}],x]

Formula

G.f.: Product_{i>=1} 1/(1-x^i)^(2^(i-1)+2^(floor((i+1)/2)-1)).
EULER transform of A005418.

A089351 Number of planar partitions of n with trace 4.

Original entry on oeis.org

1, 2, 6, 14, 33, 64, 127, 228, 404, 672, 1100, 1724, 2661, 3974, 5849, 8402, 11911, 16556, 22751, 30772, 41198, 54436, 71283, 92316, 118609, 150950, 190753, 239090, 297783, 368236, 452782, 553240, 672532, 812980, 978211, 1171144, 1396235
Offset: 4

Views

Author

Wouter Meeussen and Vladeta Jovovic, Dec 26 2003

Keywords

Comments

Also number of partitions of n objects of 2 colors into 4 parts, each part containing at least one black object.

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (Ch. XI, exercise 5 and Ch. XII, exercise 5).

Crossrefs

Column 4 of A089353. Cf. A000219, A005380, A005993 (trace 2), A050531 (trace 3).

Formula

G.f.: q^4*(q^12+q^10+2*q^9+4*q^8+2*q^7+4*q^6+2*q^5+4*q^4+2*q^3+q^2+1) / ((-1+q^4)^2*(-1+q^3)^2*(-1+q^2)^2*(-1+q)^2).

Extensions

Edited and extended by Christian G. Bower, Jan 08 2004

A217201 Number of simple unlabeled graphs with n nodes of 2 colors whose components are cycles.

Original entry on oeis.org

1, 0, 0, 4, 6, 8, 23, 42, 83, 166, 324, 622, 1236, 2366, 4595, 8900, 17225, 33212, 64376, 124360, 240819, 466284, 904149, 1753782, 3407225, 6623274, 12892131, 25116456, 48987833, 95633480, 186891367, 365549578, 715661254, 1402246154, 2749778317, 5396266284
Offset: 0

Views

Author

Geoffrey Critzer, Sep 27 2012

Keywords

Crossrefs

Programs

  • Maple
    with (numtheory):
    b:= n-> `if`(n<3, 0, add(phi(d)*2^(n/d)/(2*n), d=divisors(n))+
        `if`(irem(n, 2)=1, 2^((n-1)/2), 2^(n/2-1)+2^(n/2-2))):
    a:= proc(n) option remember; local d, j; `if`(n=0, 1,
          add(add(d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 27 2012
  • Mathematica
    Needs["Combinatorica`"]
    a=Expand[Table[nn=n;CycleIndex[DihedralGroup[nn],s]/.Table[s[i]->2,{i,1,nn}],{n,1,30}]];
    nn=30;p=Product[1/(1- x^i)^a[[i]],{i,3,nn}];CoefficientList[Series[p,{x,0,nn}],x]
    (* Second program: *)
    b[n_] := If[n < 3, 0, Sum[EulerPhi[d]*2^(n/d)/(2*n), {d, Divisors[n]}] +  If[Mod[n, 2] == 1, 2^((n - 1)/2), 2^(n/2 - 1) + 2^(n/2 - 2)]];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n - j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 05 2017, after Alois P. Heinz *)

Formula

EULER transform of 0,0,4,6,8,13,30,... A000029.

A299019 Expansion of Product_{k>=1} (1 - x^k)^(k+1).

Original entry on oeis.org

1, -2, -2, 2, 3, 6, -1, -2, -10, -14, -7, -2, 11, 26, 43, 30, 28, -6, -40, -92, -128, -132, -115, -48, 54, 200, 339, 484, 499, 476, 274, -32, -501, -998, -1539, -1924, -2042, -1838, -1139, 12, 1664, 3540, 5588, 7258, 8392, 8230, 6812, 3480, -1472, -8150, -15737, -23670, -30478
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2018

Keywords

Comments

Convolution of A010815 and A073592.
Convolution inverse of A005380.

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Product[(1 - x^k)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 52; CoefficientList[Series[Exp[-Sum[(DivisorSigma[1, k] + DivisorSigma[2, k]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[d (d + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]

Formula

G.f.: exp(-Sum_{k>=1} (sigma_1(k) + sigma_2(k))*x^k/k).

A307975 G.f. A(x) satisfies: A(x) = x * exp(Sum_{k>=1} (A(x^k) + sigma(k)*x^k)/k).

Original entry on oeis.org

0, 1, 2, 6, 17, 52, 161, 524, 1739, 5929, 20562, 72471, 258596, 932897, 3395922, 12459900, 46028216, 171056252, 639072199, 2398886256, 9042816457, 34217811625, 129926976921, 494892472911, 1890469032715, 7240573075556, 27799085344845, 106970043377619, 412474047216418
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2019

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 6*x^3 + 17*x^4 + 52*x^5 + 161*x^6 + 524*x^7 + 1739*x^8 + 5929*x^9 + 20562*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 28; A[] = 0; Do[A[x] = x Exp[Sum[(A[x^k] + DivisorSigma[1, k] x^k)/k, {k, 1, terms}]] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = SeriesCoefficient[x Product[1/(1 - x^k)^(a[k] + 1), {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 0, 28}]

Formula

G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} 1/(1 - x^n)^(a(n)+1).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d*(a(d) + 1) ) * a(n-k+1).
Previous Showing 31-38 of 38 results.