A253823
Octagonal numbers (A000567) which are also centered triangular numbers (A005448).
Original entry on oeis.org
1, 97921, 1039585, 130402572385, 1384429704481, 173658931280825761, 1843664419471976641, 231264030011583194717761, 2455233718711319470593985, 307977546462671843639087352385, 3269669116478082433043125969441, 410138010309759307549971991199125921
Offset: 1
97921 is in the sequence because it is the 181st octagonal number and the 256th centered triangular number.
-
LinearRecurrence[{1,1331714,-1331714,-1,1},{1,97921,1039585,130402572385,1384429704481},20] (* Harvey P. Dale, Jan 22 2025 *)
-
Vec(-x*(x^4+97920*x^3-390050*x^2+97920*x+1)/((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)) + O(x^100))
A254283
Indices of hexagonal numbers (A000384) which are also centered triangular numbers (A005448).
Original entry on oeis.org
1, 31, 115, 5965, 22261, 1157131, 4318471, 224477401, 837761065, 43547458615, 162521328091, 8447982493861, 31528299888541, 1638865056350371, 6116327657048815, 317931372949478065, 1186536037167581521, 61677047487142394191, 230181874882853766211
Offset: 1
31 is in the sequence because the 31st hexagonal number is 1891, which is also the 36th centered triangular number.
A254284
Indices of centered triangular numbers (A005448) which are also hexagonal numbers (A000384).
Original entry on oeis.org
1, 36, 133, 6888, 25705, 1336140, 4986541, 259204176, 967363153, 50284273908, 187663465045, 9754889933880, 36405744855481, 1892398362898716, 7062526838498173, 367115527512416928, 1370093800923789985, 71218519939045985220, 265791134852376758821
Offset: 1
36 is in the sequence because the 36th centered triangular number is 1891, which is also the 31st hexagonal number.
-
LinearRecurrence[{1,194,-194,-1,1},{1,36,133,6888,25705},20] (* Harvey P. Dale, Nov 11 2020 *)
-
Vec(x*(35*x^3+97*x^2-35*x-1)/((x-1)*(x^2-14*x+1)*(x^2+14*x+1)) + O(x^100))
A254285
Hexagonal numbers (A000384) which are also centered triangular numbers (A005448).
Original entry on oeis.org
1, 1891, 26335, 71156485, 991081981, 2677903145191, 37298379237211, 100780206894952201, 1403687203222107385, 3792762303606727977835, 52826364168762410080471, 142736816433155393822880781, 1988067387723517337746328821, 5371757345852607787523567324911
Offset: 1
1891 is in the sequence because it is the 31st hexagonal number and the 36th centered triangular number.
A254674
Indices of heptagonal numbers (A000566) which are also centered triangular numbers (A005448).
Original entry on oeis.org
1, 10, 34, 601, 2089, 37234, 129466, 2307889, 8024785, 143051866, 497407186, 8866907785, 30831220729, 549605230786, 1911038277994, 34066657400929, 118453542014881, 2111583153626794, 7342208566644610, 130884088867460281, 455098477589950921
Offset: 1
10 is in the sequence because the 10th heptagonal number is 235, which is also the 13th centered triangular number.
A254675
Indices of centered triangular numbers (A005448) which are also heptagonal numbers (A000566).
Original entry on oeis.org
1, 13, 44, 776, 2697, 48069, 167140, 2979472, 10359953, 184679165, 642149916, 11447128728, 39802934809, 709537301941, 2467139808212, 43979865591584, 152922865174305, 2726042129376237, 9478750500998668, 168970632155735080, 587529608196743081
Offset: 1
13 is in the sequence because the 13th centered triangular number is 235, which is also the 10th heptagonal number.
A254676
Heptagonal numbers (A000566) which are also centered triangular numbers (A005448).
Original entry on oeis.org
1, 235, 2839, 902101, 10906669, 3465871039, 41903418691, 13315875628969, 160992923703385, 51159590700627091, 618534770964985711, 196555134155933653885, 2376410429054551397509, 755164774267506397598311, 9130168249892815504243099, 2901342866180625423639056209
Offset: 1
235 is in the sequence because it is the 10th heptagonal number and the 13th centered triangular number.
-
LinearRecurrence[{1,3842,-3842,-1,1},{1,235,2839,902101,10906669},20] (* Harvey P. Dale, Oct 12 2024 *)
-
Vec(-x*(x^4+234*x^3-1238*x^2+234*x+1)/((x-1)*(x^2-62*x+1)*(x^2+62*x+1)) + O(x^100))
Original entry on oeis.org
1, 1, 4, 40, 760, 23560, 1083760, 69360640, 5895654400, 642626329600, 87397180825600, 14507932017049600, 2887078471392870400, 678463440777324544000, 185898982772986925056000, 58744078556263868317696000, 21206612358811256462688256000
Offset: 0
a(10) = 87397180825600 = 1 * 4 * 10 * 19 * 31 * 46 * 64 * 85 * 109 * 136.
For analog with centered n-gonal numbers see
A140702.
For analog with regular triangular numbers see
A006472.
For the analog with a partial sum instead of a partial product see
A006003.
-
Table[Product[(3*k^2-3*k+2)/2,{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Jul 11 2015 *)
FoldList[Times,3*Accumulate[Range[0,20]]+1] (* Harvey P. Dale, Aug 05 2018 *)
-
a(n) = prod(k=1, n, 3*k*(k-1)/2 + 1); \\ Michel Marcus, Mar 02 2023
Original entry on oeis.org
1, 4, 15151, 45154, 66466, 92629, 98689, 4976794, 6424246, 648616846, 136287949782631, 479573060375974, 69465717171756496, 4345218593958125434, 42097537753535773579024, 58071646151315164617085, 6220959179720279719590226, 458122911526080625119221854
Offset: 1
T(99) + T(100) + T(101) = 15151.
T(172) + T(173) + T(174) = 45154.
-
n = 1; lst = {}; While[n < 10^10, ctn = 3 n (n - 1)/2 + 1; id = IntegerDigits@ ctn; If[id == Reverse@id, AppendTo[lst, ctn]; Print[{n, ctn}]]; n++ ]; lst (* Robert G. Wilson v *)
A253470
Indices of centered triangular numbers (A005448) which are also centered pentagonal numbers (A005891).
Original entry on oeis.org
1, 5, 36, 280, 2201, 17325, 136396, 1073840, 8454321, 66560725, 524031476, 4125691080, 32481497161, 255726286205, 2013328792476, 15850904053600, 124793903636321, 982500325036965, 7735208696659396, 60899169248238200, 479458145289246201, 3774765993065731405
Offset: 1
5 is in the sequence because the 5th centered triangular number is 31, which is also the 4th centered pentagonal number.
Comments